Ref #	Indicator	Metric(s) Monitored	Location (RECOVER Regions and/or Other Areas)	Description of Monitoring
7	Alligators	Species Abundance	GE	Alligator population monitoring via nighttime spotlight
				surveys.
8	Alligators	Species Abundance	GE	Alligator population monitoring via nighttime spotlight
				surveys.
9	Alligators	Species Abundance	GE	Alligator population monitoring via nighttime spotlight
				surveys.
10	Alligators	Species Abundance	GE	Alligator population monitoring via nighttime spotlight
				surveys.
11	Alligators	Species Abundance	GE	Alligator population monitoring via nighttime spotlight
				surveys.
12	Alligators	Species Abundance	GE	Alligator population monitoring via nighttime spotlight
				surveys.
13	Alligators	Species Abundance	GE	Alligator population monitoring via nighttime spotlight
				surveys.
14	Alligators	Species Abundance	GE	Alligator population monitoring via nighttime spotlight
				surveys.
15	Alligators	Species Abundance	GE	Alligator population monitoring via nighttime spotlight
				surveys.
19	Alligators	Species Abundance	SWS - A-1 FEB, East EAA	Alligator population monitoring via nighttime spotlight
				surveys.
20	Alligators	Species Abundance	SWS - Alligator Lake, Upper Kissimmee	Alligator population monitoring via nighttime spotlight
				surveys.
21	Alligators	Species Abundance	SWS - Caloosahatchee River, East Caloosahatchee	Alligator population monitoring via nighttime spotlight
				surveys.
22	Alligators	Species Abundance	SWS - Cypress Lake, Upper Kissimmee	Alligator population monitoring via nighttime spotlight
				surveys.
23	Alligators	Species Abundance	SWS - East Lake Tohopekaliga, Upper Kissimmee	Alligator population monitoring via nighttime spotlight
				surveys.
24	Alligators	Species Abundance	SWS - Kissimmee River (Pool A), Lower Kissimmee	Alligator population monitoring via nighttime spotlight
				surveys.
25	Alligators	Species Abundance	SWS - Kissimmee River (Pool E), Lower Kissimmee	Alligator population monitoring via nighttime spotlight
				surveys.
26	Alligators	Species Abundance	SWS - Kissimmee River, Lower Kissimmee	Alligator population monitoring via nighttime spotlight
				surveys.
27	Alligators	Species Abundance	SWS - Lake Arbuckle, Lower Kissimmee	Alligator population monitoring via nighttime spotlight
				surveys.
28	Alligators	Species Abundance	SWS - Lake Hatchineha, Upper Kissimmee	Alligator population monitoring via nighttime spotlight
				surveys.

29	Alligators	Species Abundance	SWS - Lake Hicpochee, East Caloosahatchee	Alligator population monitoring via nighttime spotlight
				surveys.
30	Alligators	Species Abundance	SWS - Lake Istokpoga, Lower Kissimmee	Alligator population monitoring via nighttime spotlight
				surveys.
31	Alligators	Species Abundance	SWS - Lake Jackson (Three Lakes WMA), Upper Kissimmee	Alligator population monitoring via nighttime spotlight
				surveys.
32	Alligators	Species Abundance	SWS - Lake Kissimmee, Upper Kissimmee	Alligator population monitoring via nighttime spotlight
				surveys.
33	Alligators	Species Abundance	SWS - Lake Marian, Upper Kissimmee	Alligator population monitoring via nighttime spotlight
				surveys.
34	Alligators	Species Abundance	SWS - Lake Mary Jane, Upper Kissimmee	Alligator population monitoring via nighttime spotlight
				surveys.
35	Alligators	Species Abundance	SWS - Lake Pierce, Upper Kissimmee	Alligator population monitoring via nighttime spotlight
				surveys.
36	Alligators	Species Abundance	SWS - Lake Rosalie, Upper Kissimmee	Alligator population monitoring via nighttime spotlight
				surveys.
37	Alligators	Species Abundance	SWS - Lake Tohopekaliga, Upper Kissimmee	Alligator population monitoring via nighttime spotlight
				surveys.
38	Alligators	Species Abundance	SWS - Lake Trafford, Southwest Coast	Alligator population monitoring via nighttime spotlight
				surveys.
39	Alligators	Species Abundance	SWS - STA 1E, Palm Beach	Alligator population monitoring via nighttime spotlight
				surveys.
40	Alligators	Species Abundance	SWS - STA 1W North, East EAA	Alligator population monitoring via nighttime spotlight
				surveys.
41	Alligators	Species Abundance	SWS - STA 1W South, East EAA	Alligator population monitoring via nighttime spotlight
				surveys.
42	Alligators	Species Abundance	SWS - STA East, East EAA	Alligator population monitoring via nighttime spotlight
				surveys.
43	Alligators	Species Abundance	SWS - STA West, East EAA	Alligator population monitoring via nighttime spotlight
	-			surveys.
44	Alligators	Species Abundance	SWS - Tiger Lake, Upper Kissimmee	Alligator population monitoring via nighttime spotlight
	-			surveys.

312	Alligators	Other - Body condition; distribution; relative density	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
313	Alligators	Other - Body condition; distribution; relative density	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
566	Alligators	Other - Body condition; distribution; relative density	GE	Alligators are monitored along 4 routes in Water Conservation Area 3 (A/B) to understand abundance and body condition
585	Alligators	Other - Reproductive effort; nest density and distribution; nest success/fate	GE	Annual Alligator Systematic Reconnaissance Flights to determine nesting effort, distribution, and success.
214	Amphibians		SWS	
297	Crocodiles	Body Condition	GE	Ecology, Modeling, and Monitoring of Crocodilians in the Greater Everglades
45	Exotic Fauna	Species Richness	All RECOVER Modules	Opportunistic observations of nonnative wildlife.
50	Exotic Fauna	Species Richness	GE	Road cruising nonnative wildlife surveys.
298	Exotic Fauna	Other - Mercury and methylmercury content of python and tegu tissues	GE	Mercury and methylmercury in python and tegu tissues
588	Exotic Fauna	Other - Occupancy/detection	GE	Monitoring invasive exotic plants (Corridors of Invasiveness) in EVER, BISC, and BICY

590	Exotic Fauna	Other - presence/absence	GE, SCS, Biscayne Bay	Lionfish distributions
592	Exotic Fauna	Species Abundance	GE	Invasive tegu trapping near EVER eastern boundary
233	Exotic Fauna - Argentine black & white tegu	Species Abundance	GE	Trapping and euthanization of tegus
248	Exotic Fauna - Black and White Tegu Lizards	Other - Abundance; body condition	SWS, GE, WCAs 1, 2, & 3	Black and White tegu lizards are trapped in and adjacent to Everglades National Park to remove and monitor the population.
250	Exotic Fauna - Burmese Python	Other - Body condition; distribution; relative density; juvenile survival; nest success; recruitment; mercury; temperature; reproduction; abundance	SWS, GE, WCAs 1, 2, & 3	Burmese pythons (scout snakes) are monitored in Big Cypress National Preserve and South Florida Water Management District Lands to understand vital rates (survival and reproduction) and abundance.
299	Exotic Fauna - Burmese Python	Body Condition	GE	Burmese pythons in the Greater Everglades: Movement impacts, and control tools
51	Exotic Flora	Other - Monitor to find species and new infestations and post monitoring after removal	GE	Nonnative plant monitoring and removal compliance checks.
52	Exotic Flora	Other - Monitor to find species and new infestations and post monitoring after removal	Other - East Caloosahatchee	Nonnative plant monitoring and removal compliance checks.
53	Exotic Flora	Other - Monitor to find species and new infestations and post monitoring after removal	Other - East Caloosahatchee	Nonnative plant monitoring and removal compliance checks.
54	Exotic Flora	Other - Monitor to find species and new infestations and post monitoring after removal	Other - Palm Beach, St. Lucie/Martin Counties	Nonnative plant monitoring and removal compliance checks.
295	Exotic Flora	Species Abundance	GE	Presence and abundance of "early detection" invasive plant species are measured along standardized routes within the Greater Everglades region

296	Exotic Flora	Species Abundance	GE	Priority invasive plant species cover is monitored on 5 year intervals within WCA1, 2, 3, ENP, BCNP, Tribal Lands, WMA's (Holey Land, Rotenberger, Southern Glades) along aerial transects within a 4km grid system.
392	Exotic Flora	Other - Collected on lakes. Field Method performed under DEP SOP LVI 1000. Coefficient of Conservatism score is calculated using DEP SOP LVI 2000.	GE, SWS	A statewide probabilistic water quality monitoring network that collects samples from lakes, rivers, streams, canals, confined and unconfined aquifers. Flora is collected only from lakes.
394	Exotic Flora		All RECOVER Modules and SFWMD North of Lake Okeechobee, Kissimmee and Caloosahatchee basins	Surface water chemistry and biological monitoring for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code). These data are used to assess the waterbody health and for those waterbodies that are verified as impaired, provides data used to develop Total Maximum Daily Loads (TMDLs) and evaluate implementation of Basin Management Action Plans (BMAPs).
575	Exotic Flora	Species Abundance	GE	Multiscale Exotic Plant Systematic Reconnaissance Flights
593	Exotic Flora	Other - species presence and absence	GE, SCS, Biscayne Bay	Invasive species distribution and response to treatment
594	Exotic Flora	Other - species presence and absence	GE, SCS, Biscayne Bay	Invasive species distribution and response to treatment
597	Exotic Flora	Species Abundance	GE	Multiscale Exotic Plant Systematic Reconnaissance Flights
676	Exotic Flora - Lygodium microphyllum	Other - presence; elevation; total water depth; life history; size;	GE	Old World Climbing Fernon Tree Islands Survey
57	Fish	Other	GE	Boat electrofishing sampling annually in the L 67 and Picayune Strand areas to collect pre and post restoration fish community and density data to evaluate impacts of hydrologic restoration efforts on fish

70	Fish	Other - Species abundance, species diversity, sportfish body condition, sportfish growth, angler effort, angler catch rate	GE	Freshwater fish communities and sport fish populations are typically sampled every 2 to 3 years with boat electrofishing and historically angler creel surveys were conducted to evaluate trends in fisheries on L-35B canal.
72	Fish	Other - Species abundance, species diversity, sportfish body condition, sportfish growth, angler effort, angler catch rate	GE, LO, SWS	Freshwater fish communities and sport fish populations are monitored annually with boat electrofishing and angler creel surveys to evaluate trends in fisheries on Lake Okeechobee, Lake Trafford, and L-67 A Canal
78	Fish	Species Abundance	SWS	Fish communities are monitored using multiple net types (21.3-m seine, 40-m seine, 6.1-m otter trawl
80	Fish	Species Diversity	sws	Fish communities are monitored using multiple net types (21.3-m seine, 40-m seine, 6.1-m otter trawl
181	Fish	Other - mercury	GE	Regional Environmental Monitoring and Assessment Program (REMAP) - vegetation, periphyton, water quality, soil/sediment, physical measurements, mercury in mosquitofish and all media. ~120 locations throughout the Everglades and 40 locations in Big Cypress National Preserve
300	Fish	Other - Mercury and methylmercury in biological tissues	GE	Mercury and methylmercury in gambusia
316	Fish	Other - Body condition; distribution; relative density	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park.

317	Fish	Other - Body condition; distribution; relative density	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
567	Fish - Macroinvertebrate s	Density - Vegetation within throw trap	GE	Dry season aquatic fauna densities across the Greater Everglades, utilizing the GRTS paneling sampling design
568	Fish - Macroinvertebrate s, and Periphyton (primary production)	Species Abundance - Abundance, composition, density, Nutrient content	GE	Wet season aquatic fauna densities and primary production across the Greater Everglades, utilizing the GRTS paneling sampling design
220	Invasive Plants		sws	
221	Native Vegetation Mosaic		SWS	

1	Other - Apple Snails	Other - species of snails; number of snails; shell width; snail density	GE	Apple Snail (Pomacea spp.) Monitoring: Evaluating apple snail populations response to changes in hydrology in the Everglades - WCA 3 (Airboat Surveys)
320	Other - Aquatic Consumers	Other - Species abundance, composition	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park.
321	Other - Aquatic Consumers	Other - Species abundance, composition	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.

324	Other - Aquatic Consumers	Other - Stable isotopes (C, N, S) of functional groups	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
326	Other - Aquatic Consumers	Other - Stoichiometry, fatty acids	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
84	Other - Bachman's sparrow	Species Abundance	Other - Palm Beach, St. Lucie/Martin Counties	Point count surveys.
85	Other - Bald Eagle	Nest Success	GE	Bald eagle nest monitoring.
86	Other - Bald Eagle	Nest Success	Other - East Caloosahatchee	Nest monitoring.
87	Other - Bald Eagle	Nest Success	Other - Palm Beach County	Nest monitoring.
88	Other - Bald Eagle	Nest Success	Other - Palm Beach, St. Lucie/Martin Counties	Nest monitoring.
89	Other - Bald Eagle	Nest Success	sws	Nest monitoring.
90	Other - Bats	Species Richness	GE	Acoustic monitoring.
91	Other - Bats	Species Richness	Other - East Caloosahatchee	Acoustic monitoring.
92	Other - Bats	Species Richness	Other - Miami-Dade County	Acoustic monitoring.
93	Other - Bats	Species Richness	Other - Palm Beach, St. Lucie/Martin Counties	Acoustic monitoring.
94	Other - Bats	Species Richness	sws	Acoustic monitoring.
95	Other - Bats	Species Richness	sws	Miss-netting for bats.

98	Other - Big Cypress Fox Squirrel	Species Richness	Other - East Caloosahatchee	Presence/absence monitoring.
99	Other - Big Cypress Fox Squirrel	Species Richness	SWS	Presence/absence monitoring.
100	Other - Big Cypress Fox Squirrel	Species Richness	SWS	Presence/absence monitoring.
101	Other - Big Cypress Fox Squirrel	Species Richness	SWS	Presence/absence monitoring.
102	Other - Birds	Other - presence during breeding season	GE	Breeding bird surveys (part of North American Breeding Bird Surveys USGS project).
103	Other - Birds	Other - presence during breeding season	Other - Big Cypress Preserve	Breeding bird surveys (part of North American Breeding Bird Surveys USGS project).
104	Other - Birds	Other - presence during breeding season	sws	Breeding bird surveys (part of North American Breeding Bird Surveys USGS project).
107	Other - Birds	Species Richness	GE	Opportunistic observations, stationary and mobile point count surveys.
108	Other - Birds	Species Richness	Other - East Caloosahatchee	Christmas bird count surveys.
109	Other - Birds	Species Richness	Other - East Caloosahatchee	Christmas bird count surveys.
110	Other - Birds	Species Richness	Other - East Caloosahatchee	Christmas bird count surveys.
111	Other - Birds	Species Richness	Other - East Caloosahatchee	Opportunistic observations, stationary and mobile point count surveys.
112	Other - Birds	Species Richness	Other - East Caloosahatchee	Opportunistic observations, stationary and mobile point count surveys.
113		Other - presence during breeding season	GE	Breeding season callback surveys.
114	Other - Black Rail	Other - presence during breeding season	Other - Palm Beach County	Breeding season callback surveys.
115	Other - Black Rail	Other - presence during breeding season	Other - Palm Beach, St. Lucie/Martin Counties	Breeding season callback surveys.

328	Other - Bull sharks	Other - Body condition; distribution; relative density	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
2	Other - Cape Sable Seaside Sparrow	Species Abundance	GE	Cape Sable Seaside Sparrow Rangewide Population Monitoring - ENP (Helicopter Surveys)
612	Other - Cape Sable Seaside Sparrow	Nest Success	GE	Cape Sable Seaside Sparrows Demographic Surveys Subpopulation E
613	Other - Cape Sable Seaside Sparrow	Other - Detection/location of singing male birds	GE - ENP and adjacent state-owned lands	Annual range-wide Cape Sable Seaside Sparrow helicopter survey
330	Other - Climate Variability & Change	Other - Meteorology, model, outputs, index values	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park.
331	Other - Climate Variability & Change	Other - Meteorology, model, outputs, index values	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
334	Other - Climate Variability & Change	Other - Precipitation inputs	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data page linked in Comments column for more detailed description.
116	Other - Crested Caracara	Nest Success	GE	Breeding territory and nest monitoring.
117	Other - Crested Caracara	Nest Success	Other - East Caloosahatchee	Breeding territory and nest monitoring.

118	Other - Crested	Nest Success	Other - East Caloosahatchee	Breeding territory and nest monitoring.
	Caracara			
119	Other - Crested	Nest Success	Other - East Caloosahatchee	Breeding territory and nest monitoring.
	Caracara			
120	Other - Crested	Nest Success	Other - East Caloosahatchee	Breeding territory and nest monitoring.
	Caracara			
401	Other - Depth	Depth	All RECOVER Modules and SFWMD North of Lake	Surface water chemistry and biological monitoring for
			Okeechobee, Kissimmee and Caloosahatchee basins	Impaired Waters Rule (Chapter 62-303, Florida
				Administrative Code). These data are used to assess the
				waterbody health and for those waterbodies that are
				verified as impaired, provides data used to develop
				Total Maximum Daily Loads (TMDLs) and evaluate
				implementation of Basin Management Action Plans
				(BMAPs).
407	Other - Dissolved	Dissolved Oxygen	All RECOVER Modules and SFWMD North of Lake	Surface water chemistry and biological monitoring for
	Oxygen		Okeechobee, Kissimmee and Caloosahatchee basins	Impaired Waters Rule (Chapter 62-303, Florida
				Administrative Code). These data are used to assess the
				waterbody health and for those waterbodies that are
				verified as impaired, provides data used to develop
				Total Maximum Daily Loads (TMDLs) and evaluate
				implementation of Basin Management Action Plans
				(BMAPs).
411	Other - Dissolved	Dissolved Oxygen	SWS	Surface water chemistry and biological monitoring for
	Oxygen			Impaired Waters Rule (Chapter 62-303, Florida
				Administrative Code).T hese data are used to assess the
				waterbody health and for those waterbodies that are
				verified as impaired, provides data used to develop
				Total Maximum Daily Loads (TMDLs) and evaluate
				implementation of Basin Management Action Plans
				(BMAPs).

	-	Other - mark/re-capture; banding fledglings; clutch size;		Demographic, Movement, and Habitat Studies of the Endangered Snail Kite in Response to Operational Plans -
		nest success		Lake Okeechobee, WCAs, ENP (Airboat Surveys)
4		Other - movement patterns (telemetry); fate of individuals		Evaluating the Movement Patterns and Survival of Juvenile Everglade Snail Kites (Rostrahamus sociabilis plumbeus) - Lake Okeechobee (Telemetry)
121	Other - Everglade snail kite	Nest Success	GE	Nest monitoring.
576		Other - mapping outermost perimeter of fires	SWS - Big Cypress National Preserve	Fire perimeter mapping
614		Other - mapping outermost perimeter of fires	GE, SCS, Everglades National Park	Fire perimeter mapping

Other - fish (small and large); macroinvertebrate s; Wildlife (aq. amphibians); Exotic fauna; SAV; periphyton; Vegetation; water depth	Species Abundance;		Freshwater Fish monitoring in Water Conservation Area 3 (WCA3) and Everglades National Park (EVER). A long- term monitoring project to assess the seasonal status and trends of both small fish and large macroinvertebrates and large fishes, in the wet prairie and slough habitats of EVER Shark River and Taylor Sloughs, and WCA3A&B.
Other - fish (small); macroinvertebrate s; Wildlife (aq. amphibians); Exotic fauna; SAV; periphyton; Vegetation; water depth	Other - Density; Species Abundance; Species Diversity; Species Richness; Percent Cover; Depth	GE	Long-term freshwater fish monitoring in Everglades National Park.

619	Other - Fish; Exotic fauna; Macroinvertebrate s; Water quality; Water depth	Other - Species Abundance; Species Diversity; Species Richness; water quality constituents of mercury methylation; Mercury burden fish tissue; Depth	GE	Everglades National Park parkwide fish and crayfish distribution network and Methylmercury dynamic in Shark River Slough in a COP and sea level rise world.
235	Other - Florida bristle fern	Species Abundance	GE - Miami-Dade County	Measure the area covered by all known Florida bristle fern colonies. Increase knowledge of the fern's microhabitat needs with temperature and humidity dataloggers.
122	Other - Florida grasshopper sparrow	Species Richness	SWS	Presence of Florida grasshopper sparrows.
301	Other - Flow	Other	GE	Monitoring flows into ENP, along Taylor Slough and Shark River Slough.
123	Other - Frogs and toads	Species Richness	SWS	Frog call surveys.
124	Other - Gopher tortoise	Species Abundance	SWS	Line transect distance sampling.

125	Other - Habitat	Other - Maps out habitat type and amount throughout the area	GE	Natural community mapping.
126	Other - Habitat	Other - Maps out habitat type and amount throughout the area	Other - East Caloosahatchee	Natural community mapping.
127	Other - Habitat	Other - Maps out habitat type and amount throughout the area	Other - Palm Beach, St. Lucie/Martin Counties	Natural community mapping.
336	Other - Hydrologic connectivity	Other - Groundwater nutrients, salinity	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
338	Other - Hydrologic connectivity	Other - Groundwater temperature, dissolved oxygen, salinity, discharge, velocity	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
340	Other - Litter	Other - litter decomposition	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.

304	Other - Long-term measurements of ecosystem gas exchanges vegetation and soil characteristics, and surface-energy cycling are important indicators of condition of these ecosystems.	Other - water vapor, carbon dioxide, and methane	GE	Disturbances to Water, Energy and Biogeochemical Cycling for Restored and Degraded Greater Everglades Wetlands: Digital Surveys and Eddy-Covariance Flux Tower Measurements
128	Other - Marsh birds	Other - presence during breeding season	Other - Palm Beach County	Breeding season callback surveys.
129	Other - Marsh birds	Other - presence during breeding season	Other - Palm Beach, St. Lucie/Martin Counties	Breeding season callback surveys.
130	Other - Mega- fauna	Species Richness	Other - Big Cypress Preserve	Presence of mega-fauna monitoring.
182	Other - mercury	Other - mercury in 5 media	GE	Regional Environmental Monitoring and Assessment Program (REMAP) - vegetation, periphyton, water quality, soil/sediment, physical measurements, mercury in mosquitofish and all media. ~120 locations throughout the Everglades and 40 locations in Big Cypress National Preserve
342	Other - Microbes	Other - bacterial abundance, biomass, productivity	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.

344	Other - Microbes	Other - community composition	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
346	Other - Net ecosystem metabolism	Other	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
131	Other - Northern bobwhite	Other - Number of breeding males	SWS	Spring whistle count surveys.
132	Other - Northern bobwhite	Other - Number of coveys	Other - East Caloosahatchee	Fall covey count surveys.
413	Other - Nutrients	Nutrients	All RECOVER Modules and SFWMD North of Lake Okeechobee, Kissimmee and Caloosahatchee basins	Surface water chemistry and biological monitoring for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code). These data are used to assess the waterbody health and for those waterbodies that are verified as impaired, provides data used to develop Total Maximum Daily Loads (TMDLs) and evaluate implementation of Basin Management Action Plans (BMAPs).

348	Other - Organic matter	Other - particulate organic matter	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
305	Other - Peat/soil	Other - mercury, methylmercury, moisture content, and loss on ignition	GE	Peat/soil samples for mercury, methylmercury, moisture content, and loss on ignition (proxy for organic carbon content)
419	Other - Percent Cover	Percent Cover	All RECOVER Modules and SFWMD North of Lake Okeechobee, Kissimmee and Caloosahatchee basins	Surface water chemistry and biological monitoring for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code). These data are used to assess the waterbody health and for those waterbodies that are verified as impaired, provides data used to develop Total Maximum Daily Loads (TMDLs) and evaluate implementation of Basin Management Action Plans (BMAPs).
621	Fish; Exotic fauna;	Nutrients; Species Abundance;	GE	Analyzing the Impact of Changing Hydrologic Conditions along the Boundary of Everglades National Park (EVER). Gathering field data on fish assemblage structure and movement patterns and tissue phosphorus in periphyton and vascular plants to assess the influence of hydrological management features and operations along the easter boundary of EVER.
426	Other - Phosphorus	Phosphorus	All RECOVER Modules and SFWMD North of Lake Okeechobee, Kissimmee and Caloosahatchee basins	Surface water chemistry and biological monitoring for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code). These data are used to assess the waterbody health and for those waterbodies that are verified as impaired, provides data used to develop Total Maximum Daily Loads (TMDLs) and evaluate implementation of Basin Management Action Plans (BMAPs).

350	Other - Plankton pigment	Other - pigment concentrations	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
133	Other - Rare Plants	Species Richness	GE	Observations by walking transects.
134	Other - Rare Plants	Species Richness	Other - Palm Beach County	Observations by walking transects.
135	Other - Rare Plants	Species Richness	Other - Palm Beach, St. Lucie/Martin Counties	Observations by walking transects.
136	Other - Red- cockaded woodpecker	Other - Abundance, recruitment, nest success, etc.	Other - Big Cypress Preserve	Population monitoring
137	Other - Red- cockaded woodpecker	Other - Abundance, recruitment, nest success, etc.	Other - Palm Beach County	Population monitoring
138	Other - Red- cockaded woodpecker	Other - Abundance, recruitment, nest success, etc.	Other - Palm Beach, St. Lucie/Martin Counties	Population monitoring
139	Other - Red- cockaded woodpecker	Other - Abundance, recruitment, nest success, etc.	Other - Palm Beach, St. Lucie/Martin Counties	Population monitoring
140	Other - Red- cockaded woodpecker	Other - Abundance, recruitment, nest success, etc.	sws	Population monitoring
141	Other - Reptiles and Amphibians	Species Richness	GE	Frog call surveys, turtle trapping, opportunistic observations, and road cruising.
142	Other - Reptiles and Amphibians	Species Richness	Other - East Caloosahatchee	Coverboard surveys.
143	Other - Reptiles and Amphibians	Species Richness	Other - East Caloosahatchee	Frog call surveys, turtle trapping, drift fence surveys, opportunistic observations, and road cruising.
144	Other - Reptiles and Amphibians	Species Richness	Other - East Caloosahatchee	Frog call surveys, turtle trapping, opportunistic observations, and road cruising.

	mangrove, seagrass	Other - aboveground biomass productivity	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
240	Other - Sea turtles	Nest Success	SWS	Since 1989, the Index Nesting Beach Survey (INBS) has been carried out on a subset of SNBS beaches with the purpose of measuring trends in the number of nests. The index survey uses standardized data-collection criteria including consistent effort by location, fixed dates, and specialized annual training of beach surveyors. As of 2016, 36 beaches participate to the INBS program, representing 275 miles of coastline.
241	Other - Sea turtles	Nest Success	SWS	The Statewide Nesting Beach Survey (SNBS) program was initiated in 1979 under a cooperative agreement between the Florida Fish and Wildlife Conservation Commission (FWC) and the U.S. Fish and Wildlife Service. Its purpose is to document the total distribution, seasonality and abundance of sea turtle nesting in Florida. Approximately 215 beaches are surveyed annually, representing about 825 miles.

145	Other - Small mammals	Species Richness	Other - Palm Beach, St. Lucie/Martin Counties	Opportunistic observations, stationary and mobile point count surveys.
717	Other - snail kites	Nest Success; population monitoring	Upper, Lower Kissimmee, STAs	Snail Kite Monitoring - KCOL and KRRP, SFWMD projects
354	Other - Soil	Other - porewater chemistry, nutrients and salinity	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
356	Other - Soil	Other - soil chemistry	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
358	Other - Soil elevation	Other	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
622	Other - Soil Surface Elevation	Other - Soil accretion, erosion, hydrology	GE, SCS, Biscayne Bay	Soil Surface Elevation Tables (SETs) periodic monitoring to see if soil accretion keeps up with environmental factors
623	Other - Soil Surface Elevation	Other - Soil accretion, erosion, hydrology	GE, SCS, Biscayne Bay	Soil Surface Elevation Tables (SETs) periodic monitoring to see if soil accretion keeps up with environmental factors

185	Other - soil thickness and subsidence		GE	Regional Environmental Monitoring and Assessment Program (REMAP) - vegetation, periphyton, water quality, soil/sediment, physical measurements, mercury in mosquitofish and all media. ~120 locations throughout the Everglades and 40 locations in Big Cypress National Preserve
432	Other - Species Abundance	Species Abundance	All RECOVER Modules and SFWMD North of Lake Okeechobee, Kissimmee and Caloosahatchee basins	Surface water chemistry and biological monitoring for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code). These data are used to assess the waterbody health and for those waterbodies that are verified as impaired, provides data used to develop Total Maximum Daily Loads (TMDLs) and evaluate implementation of Basin Management Action Plans (BMAPs).
439	Other - Species Diversity	Species Diversity	All RECOVER Modules and SFWMD North of Lake Okeechobee, Kissimmee and Caloosahatchee basins	Surface water chemistry and biological monitoring for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code). These data are used to assess the waterbody health and for those waterbodies that are verified as impaired, provides data used to develop Total Maximum Daily Loads (TMDLs) and evaluate implementation of Basin Management Action Plans (BMAPs).
243	Other - Surface Elevation Change	Other - Surface Elevation Change, Tree Density, DBH	SWS - Ten Thousand Islands NWR	Monitor Surface Elevation Change with rSETs to evaluate impacts from rising sea levels in mangrove wetlands.

360	Other - Surface water chemistry	Other - salinity, dissolved and total nutrients, total carbon	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
146	Other - Swallow- tailed Kite	Other - Nesting activity	Other - Big Cypress Preserve	Nest monitoring.
147	Other - Swallow- tailed Kite	Other - Nesting activity	SWS	Nest monitoring.
148	Other - Swallow- tailed Kite	Species Abundance	Other - East Caloosahatchee	Roost monitoring.
446	Other - Temperature	Temperature	All RECOVER Modules and SFWMD North of Lake Okeechobee, Kissimmee and Caloosahatchee basins	Surface water chemistry and biological monitoring for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code). These data are used to assess the waterbody health and for those waterbodies that are verified as impaired, provides data used to develop Total Maximum Daily Loads (TMDLs) and evaluate implementation of Basin Management Action Plans (BMAPs).

149	Other - Tree island	Other - Wildlife species richness	GE	Tree island restoration and enhancement monitoring.
	vegetation and	and habitat use, plant growth,		
	wildlife use	and tree island vegetative		
		composition		
731	Other - vegetation	Other - live/dead vegetation, %	GE	Vegetation response to active management treatments,
	and water depth	cover (imagery/ground),		water level monitoring of AMI experiments in WCA-2A
		periodic water depths		
730	Other - Wading		GE	Arial avian monitoring of AMI experiments in WCA-2A
	birds, waterfowl	composition		
719	Other - water	Other - water quality,	GE	CEPP Ecological Responses to Flow
	velocity and	periphyton and sediment		
	nutrient loads	chemistry, hydrology (flow,		
		stage), sediment dynamics		
		(erosion, settling, transport),		
		vegetation (imagery & ground		
		surveys)		
151	Other - White-		GE	Aerial surveys for population monitoring.
	tailed deer			
152	Other - White-	Species Abundance	GE	Spotlight and tree island browse surveys during high
152	tailed deer	species Abundance		
	talled deer			water events.
452				
153	Other - White-	Species Abundance	Other - East Caloosahatchee	Aerial surveys for population monitoring.
45.4	tailed deer			
154	Other - White-	Species Abundance	Other - Big Cypress Preserve	Population monitoring
	tailed deer			
155	Other - Wildlife	e e	GE	Post prescribed burning monitoring.
	and their habitat	management		

156		Other - Vegetation management	Other - East Caloosahatchee	Post prescribed burning monitoring.
158	Other - Wood duck	-	GE	Duck box monitoring and maintenance.
5	Other - Wood Stork	Other - Colony counts and location; number of birds; clutch size; nest success	GE	Monitoring of Wood Stork Reproduction in the Everglades - WCA 3 (Aerial Surveys and Airboat Surveys)
186	Periphyton	Percent Cover	GE	Regional Environmental Monitoring and Assessment Program (REMAP) - vegetation, periphyton, water quality, soil/sediment, physical measurements, mercury in mosquitofish and all media. ~120 locations throughout the Everglades and 40 locations in Big Cypress National Preserve
222	Periphyton		SWS	
362	Periphyton	Other - Accumulation rates	GE, SCS	Periphyton accumulation rates are measured bimonthly at Florida Coastal Everglades Long Term Ecological Research sites in Shark River Slough, Taylor Slough, and Florida Bay. See data package(s) linked in Comments column for more detailed description.

364	Periphyton	Other - Biomass	GE, SCS	Periphyton biomass is measured bimonthly at Florida Coastal Everglades Long Term Ecological Research sites in Shark River Slough and Taylor Slough. See data package(s) linked in Comments column for more detailed description.
366	Periphyton	Other - composition, biomass, palatability, nutrients, productivity	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
368	Periphyton	Other - Productivity	GE, SCS	Periphyton productivity is measured annually using light and dark BOD bottle incubations at Florida Coastal Everglades Long Term Ecological Research sites in Shark River Slough and Taylor Slough. See data package(s) linked in Comments column for more detailed description.
626	Periphyton	Nutrients	GE	In order to investigate potential drivers of ecological changes in upper Taylor Slough, monitoring data are being collect for the purpose of developing a database to perform intensive water quality assessments that relates water quality dynamics to water management changes and natural drivers. Specifically, data are being used to investigate nutrient enrichment and vegetation community shifts associated with eutrophication within Upper Taylor Slough. Data collection includes surface water chemistry (TP, TN, DOC). Porewater is being analyzed for NH4, N+N, DOC, salinity and SRP. Live plant tissue, periphyton, surficial matter and soils are analyzed for TC, TN, TP, bulk density, and organic content.

697	Periphyton	Other - soil nutrients; WQ; water depth; periphyton Chl; periphyton guilds; vegetation density; vegetation species; vegetation nutrient content	GE	Upper Taylor Slough Adaptive Management Project
627	Periphyton - Total phosphorus	Other - Diatom community structure and total phosphorus	GE	Monitoring periphyton in BICY (with phosphorus sampling)
179	Phytoplankton	Other - Phytoplankton communities shift	sws	As part of the Picayune Strand Hydrological Restoration Project, agency stakeholders have expressed the need for interim monitoring for the period of time between the start of construction on the SWPF and conveyance features, and the full restoration canal plugging. The specific focus areas include water quality and hydrology.
453	Phytoplankton	Other	All RECOVER Modules and SFWMD North of Lake Okeechobee, Kissimmee and Caloosahatchee basins	Surface water chemistry and biological monitoring for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code). These data are used to assess the waterbody health and for those waterbodies that are verified as impaired, provides data used to develop Total Maximum Daily Loads (TMDLs) and evaluate implementation of Basin Management Action Plans (BMAPs).
225	Rare Plants		sws	
226	Red-cockaded Woodpecker		SWS	

459	Salinity	Other	All RECOVER Modules and SFWMD North of Lake	Surface water chemistry and biological monitoring for
			Okeechobee, Kissimmee and Caloosahatchee basins	Impaired Waters Rule (Chapter 62-303, Florida
				Administrative Code). These data are used to assess the
				waterbody health and for those waterbodies that are
				verified as impaired, provides data used to develop
				Total Maximum Daily Loads (TMDLs) and evaluate
				implementation of Basin Management Action Plans
				(BMAPs).
465	SAV	Other	All RECOVER Modules and SFWMD North of Lake	Surface water chemistry and biological monitoring for
			Okeechobee, Kissimmee and Caloosahatchee basins	Impaired Waters Rule (Chapter 62-303, Florida
				Administrative Code). These data are used to assess the
				waterbody health and for those waterbodies that are
				verified as impaired, provides data used to develop
				Total Maximum Daily Loads (TMDLs) and evaluate
				implementation of Basin Management Action Plans
				(BMAPs).
470	SAV	Other - Collected on lakes. Field	GE, SCS	A statewide probabilistic water quality monitoring
		Method performed under DEP		network that collects samples from lakes, rivers,
		SOP LVI 1000. Coefficient of		streams, canals, confined and unconfined aquifers. Flora
		Conservatism score is		is collected only from lakes.
		calculated using DEP SOP LVI		
		2000.		
718	SAV	Percent Cover; species	Everglades STAs	Submerged Aquatic Vegetation in the Everglades STAs
		abundance		
228	Small Mammals		sws	
229	Soil and		SWS	
	Biogeochemistry			

569	Tree Islands	Other - Tree DBH, stem count and density, canopy closure, hydrology from EDEN.	GE	Woody and shrub vegetation on 8 tree islands in Everglades National Park are surveyed annually and related to hydrologic and environmental conditions.
686	Tree Islands	Species Abundance	GE	WCA-3 Tree Islands (Hydro, veg and invasives)
6	Vegetation	Other - (1) height and species of the tallest plant in plot; (2) canopy height, i.e., the tallest vegetation present within a cylinder of ~5 cm width, measured at 4 pointer subplot; (3) total plant cover, in %; and (4) live vegetation cover, expressed as a % of total cover	GE	Monitoring of Vegetation Response to Changes in Hydrological Parameters within Cape Sable Seaside Sparrow Habitat in ENP - (Airboat Surveys)
164	Vegetation	Other	GE	Mechanical treatments for sawgrass marsh restoration.
168	Vegetation	Other - Planting success	GE	Native plantings for tree island restoration and enhancement.
169	Vegetation	Other - Planting success	Other - East Caloosahatchee	Native plantings for tree island restoration and enhancement.

180	Vegetation	Other - Significant vegetation changes indicative of water quality impacts	SWS	As part of the Picayune Strand Hydrological Restoration Project, agency stakeholders have expressed the need for interim monitoring for the period of time between the start of construction on the SWPF and conveyance features, and the full restoration canal plugging. The specific focus areas include water quality and hydrology.
190	Vegetation	Other - community and cattail presence	GE	Regional Environmental Monitoring and Assessment Program (REMAP) - vegetation, periphyton, water quality, soil/sediment, physical measurements, mercury in mosquitofish and all media. ~120 locations throughout the Everglades and 40 locations in Big Cypress National Preserve
370	Vegetation	Nutrients - Sawgrass above and below ground total nitrogen, total carbon, and total phosphorus	GE, SCS	Once a year during the dry season (Dec-May), sawgrass plants are collected from Florida Coastal Everglades Long Term Ecological Research sites in Shark River Slough and Taylor Slough. Sawgrass plants are divided into their live above and live below ground parts, which are analyzed for TN, TC, and TP. See data package(s) linked in Comments column for more detailed description.
374	Vegetation	Other - Mangrove DBH and height	GE, SCS	The DBH and tree height of mangrove species is measured at mangrove-dominated Florida Coastal Everglades Long Term Ecological Research sites in Shark River and Taylor Slough. See data package(s) linked in Comments column for more detailed description.

376	Vegetation	Other - Mangrove litterfall	GE, SCS	Monthly litterfall data is collected from mangrove- dominated Florida Coastal Everglades Long Term Ecological Research sites in Shark River and Taylor Slough. See data package(s) linked in Comments column for more detailed description.
378	Vegetation	Other - Sawgrass above ground biomass	GE, SCS	Sawgrass above ground biomass is measured bimonthly at Florida Coastal Everglades Long Term Ecological Research sites in Shark River Slough and Taylor Slough. See data package(s) linked in Comments column for more detailed description.
473	Vegetation	Other	All RECOVER Modules and SFWMD North of Lake Okeechobee, Kissimmee and Caloosahatchee basins.	Surface water chemistry and biological monitoring for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code). These data are used to assess the waterbody health and for those waterbodies that are verified as impaired, provides data used to develop Total Maximum Daily Loads (TMDLs) and evaluate implementation of Basin Management Action Plans (BMAPs).
479	Vegetation	Other - Collected on lakes. Field Method performed under DEP SOP LVI 1000. Coefficient of Conservatism score is calculated using DEP SOP LVI 2000.	GE, SWS	A statewide probabilistic water quality monitoring network that collects samples from lakes, rivers, streams, canals, confined and unconfined aquifers. Flora is collected only from lakes.
570	Vegetation	Other - Species composition, biomass, percent cover, water depths (in situ and from EDEN)	GE	Vegetation monitoring along 6 transects that traverse the marl prairie, ridge, and slough gradient in Everglades National Park (Shark River Slough and Taylor Slough)

571	Vegetation	Species Abundance - Water depth, soil depth, site community category	GE	System-wide vegetation monitoring (WCAs 1, 2, 3, and ENP) that utilizes the GRTS paneling design.
638	Vegetation	Other - Determination of ecotonal boundary using remote sensing and ground truth measurements	GE	Monitoring mangrove-marsh ecotone in BICY and EVER
640	Vegetation	Other - species richness, species specific cover and constancy, species-specific woody stem seedling/sapling counts, tree (greater than 5 centimeters [1.97 inches (in)]) diameter at breast height (DBH), site conditions and environmental covariates	s GE	Forest monitoring of hardwood hammocks, cypress, mangroves, and pineland forest, in BISC, BICY, and EVER

642	Vegetation	Other - Vegetation transects (community composition), Vegetation mapping, Woody vegetation mapping	GE	Monitor vegetation change using field transects and aerial and LiDAR mapping in North East Shark River Slough; Upper Taylor Slough. Creek and Mangrove Expansion in Turner River using imagery from 1940- 2018
643	Vegetation	Species Abundance	GE	Marl Prairies Vegetation Monitoring in Cape Sable Seaside Sparrows habitat
732	Vegetation	Percent Cover	GE	Vegetation mapping of the Water Conservation Areas
170	Wading Birds	Nest Success	SWS	Nest monitoring
171	Wading Birds	Species Abundance	GE including Big Cypress	Wading bird nest colony monitoring.
172	Wading Birds	Species Abundance	Other - East Caloosahatchee	Wading bird nest colony monitoring.
173	Wading Birds	Species Abundance	Other - East Caloosahatchee	Wading bird nest colony monitoring.
174	Wading Birds	Species Abundance	Other - East Caloosahatchee	Wading bird nest colony monitoring.
175	Wading Birds	Species Abundance	Other - East Caloosahatchee	Wading bird nest colony monitoring.
176	Wading Birds	Species Abundance	Other - Palm Beach County	Wading bird nest colony monitoring.
177	Wading Birds	Species Abundance	Other - Palm Beach, St. Lucie/Martin Counties	Wading bird nest colony monitoring.

573	Wading Birds	Colony Size - Reproductive success at subset of colonies	GE	Wading bird nesting colony location, size, and timing in WCAs 1, 2, and 3 during the dry season
645	Wading Birds	Other - Colony nesting locations and nesting numbers by species, monthly overall status by species, and overall outcome by species (via monthly or more frequent aerial surveys)		Seasonal wading bird nesting monitoring across the mainland areas of EVER and southern BICY
708	Wading Birds	Other - Number of nests; timing of nesting; Location of nesting	GE	Helicopter surveys of wading bird colonies
729	Wading Birds	Other - Size, species composition, location, timing of wading foraging flock		Helicopter surveys of wading bird foraging

230	Wading Birds		SWS	
191	Water Depth		GE	Regional Environmental Monitoring and Assessment Program (REMAP) - vegetation, periphyton, water quality, soil/sediment, physical measurements, mercury in mosquitofish and all media. ~120 locations throughout the Everglades and 40 locations in Big Cypress National Preserve
383	Water Depth	Depth	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
481	Water Depth	Depth	GE, LO, SCS, SWS	A statewide probabilistic water quality monitoring network that collects samples from lakes, rivers, streams, canals, confined and unconfined aquifers.
487	Water Depth	Other	All RECOVER Modules and SFWMD North of Lake Okeechobee, Kissimmee and Caloosahatchee basins	Surface water chemistry and biological monitoring for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code). These data are used to assess the waterbody health and for those waterbodies that are verified as impaired, provides data used to develop Total Maximum Daily Loads (TMDLs) and evaluate implementation of Basin Management Action Plans (BMAPs).
648	Water Depth	Depth	GE	NPS Hydrological Monitoring Network; 120 hydrological monitoring stations with 60 stations providing water stage data for EDEN.

308	Water Quality	Other - mercury, methylmercury, dissolved organic carbon, sulfate, major ions, and redox	GE	Surface water and pore water samples for mercury, methylmercury, dissolved organic carbon, sulfate, major ions, and redox
385	Water Quality	Nutrients	GE, SCS	Surface water samples are collected and analyzed for water quality Florida Coastal Everglades Long Term Ecological Research sites and other coastal sites in Everglades National Park. See data package(s) linked in Comments column for more detailed description.
386	Water Quality	Nutrients	GE, SCS	Surface water samples are collected and analyzed for water quality at all Florida Coastal Everglades Long Term Ecological Research sites in Shark River Slough and Taylor Slough. See data package(s) linked in Comments column for more detailed description.
389	Water Quality	Other - Surface water dissolved organic matter	GE, SCS	Since 2000, the Florida Coastal Everglades Long Term Ecological Research program has monitored 14 core sites across Shark River Slough, Taylor Slough/Panhandle, and Florida Bay in Everglades National Park. See data package(s) linked in Comments column for more detailed description.

493	Water Quality	Dissolved Oxygen	GE, LO, SCS, SWS	A statewide probabilistic water quality monitoring network that collects samples from lakes, rivers, streams, canals, confined and unconfined aquifers.
497	Water Quality	Nutrients	GE, LO, SCS, SWS	A statewide probabilistic water quality monitoring network that collects samples from lakes, rivers, streams, canals, confined and unconfined aquifers.
504	Water Quality	Other	All RECOVER Modules and SFWMD North of Lake Okeechobee, Kissimmee and Caloosahatchee basins.	Surface water chemistry and biological monitoring for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code). These data are used to assess the waterbody health and for those waterbodies that are verified as impaired, provides data used to develop Total Maximum Daily Loads (TMDLs) and evaluate implementation of Basin Management Action Plans (BMAPs).
512	Water Quality	Other - For Lakes, Rivers, Streams, Canals resources the additional parameters collected are as follows: Ammonia, TOC, Chloride, Sulfate, Fluoride, Alkalinity, Turbidity, TSS, Metals, Cyanotoxins, Wastewater Tracers, Pesticides, Chlorophyll a, True Color, Hardness, Escherichia coli, Field pH, Field Specific Conductance, Field DO.		A statewide probabilistic water quality monitoring network that collects samples from lakes, rivers, streams, canals, confined and unconfined aquifers.
515	Water Quality	Phosphorus	GE, LO, SCS, SWS	A statewide probabilistic water quality monitoring network that collects samples from lakes, rivers, streams, canals, confined and unconfined aquifers.
521	Water Quality	Temperature	GE, LO, SCS, SWS	A statewide probabilistic water quality monitoring network that collects samples from lakes, rivers, streams, canals, confined and unconfined aquifers.

649	Water Quality	Nutrients	GE	This monitoring project is a continuation and extension of a previous monitoring network established in 2006 to document the patterns of abundance of key ecological indicators (periphyton, soils, vegetation, and aquatic consumers) across the North Shark River Slough landscape. A total of 30 sites were established and monitored in 2006, 2007 and 2008, with 22 sites sampled during the wet season and 8 sites sampled 3 times per year for the latter two years. Additional baseline data was collected across the monitoring network in 2012, including 10 new monitoring sites established to assess ecological impacts of the Tamiami Trail 1-mile bridge. In 2016, an additional 40 monitoring sites were selected along transects in ENP marshes starting at and roughly perpendicular to the L-29 Canal. The purpose of these sites was to monitor potential effects of MWD operations on nutrients in surface water, soils, periphyton, and vegetation tissue from flow discharges at the Tamiami Trail bridges and through culverts. This included assessment of S-356 pumping operations and L-29 Canal incremental stage increases.
650	Water Quality	Nutrients	GE	In order to investigate potential drivers of ecological changes in upper Taylor Slough, monitoring data are being collect for the purpose of developing a database to perform intensive water quality assessments that relates water quality dynamics to water management changes and natural drivers. Specifically, data are being used to investigate nutrient enrichment and vegetation community shifts associated with eutrophication within Upper Taylor Slough. Data collection includes surface water chemistry (TP, TN, DOC). Porewater is being analyzed for NH4, N+N, DOC, salinity and SRP. Live plant tissue, periphyton, surficial matter and soils are analyzed for TC, TN, TP, bulk density, and organic content.

199	Water Quality - ammonium	SWS	Provide a greater understanding of effects of Caloosahatchee River Estuary (CRE) discharges on large areas of offshore benthic habitats by combining improved quantitative analyses of existing data (simulation modeling) with benthic nutrient flux and monitoring focused on both biotic and physicochemical aspects of the ecosystem.
200	Water Quality - atrazine	SWS	Provide a greater understanding of effects of Caloosahatchee River Estuary (CRE) discharges on large areas of offshore benthic habitats by combining improved quantitative analyses of existing data (simulation modeling) with benthic nutrient flux and monitoring focused on both biotic and physicochemical aspects of the ecosystem.
201	Water Quality - dissolved inorganic carbon	SWS	Provide a greater understanding of effects of Caloosahatchee River Estuary (CRE) discharges on large areas of offshore benthic habitats by combining improved quantitative analyses of existing data (simulation modeling) with benthic nutrient flux and monitoring focused on both biotic and physicochemical aspects of the ecosystem.
202	Water Quality - dissolved oxygen	SWS	Provide a greater understanding of effects of Caloosahatchee River Estuary (CRE) discharges on large areas of offshore benthic habitats by combining improved quantitative analyses of existing data (simulation modeling) with benthic nutrient flux and monitoring focused on both biotic and physicochemical aspects of the ecosystem.

203	Water Quality - Dissolved phosphorus	SWS	Provide a greater understanding of effects of Caloosahatchee River Estuary (CRE) discharges on large areas of offshore benthic habitats by combining improved quantitative analyses of existing data (simulation modeling) with benthic nutrient flux and monitoring focused on both biotic and physicochemical aspects of the ecosystem.
204	Water Quality - fluorescence	SWS	Provide a greater understanding of effects of Caloosahatchee River Estuary (CRE) discharges on large areas of offshore benthic habitats by combining improved quantitative analyses of existing data (simulation modeling) with benthic nutrient flux and monitoring focused on both biotic and physicochemical aspects of the ecosystem.
205	Water Quality - glyphosphate	SWS	Provide a greater understanding of effects of Caloosahatchee River Estuary (CRE) discharges on large areas of offshore benthic habitats by combining improved quantitative analyses of existing data (simulation modeling) with benthic nutrient flux and monitoring focused on both biotic and physicochemical aspects of the ecosystem.
206	Water Quality - nitrate	SWS	Provide a greater understanding of effects of Caloosahatchee River Estuary (CRE) discharges on large areas of offshore benthic habitats by combining improved quantitative analyses of existing data (simulation modeling) with benthic nutrient flux and monitoring focused on both biotic and physicochemical aspects of the ecosystem.

207	Water Quality - nitrite	SWS	Provide a greater understanding of effects of Caloosahatchee River Estuary (CRE) discharges on large areas of offshore benthic habitats by combining improved quantitative analyses of existing data (simulation modeling) with benthic nutrient flux and monitoring focused on both biotic and physicochemical aspects of the ecosystem.
208	Water Quality - silicate	SWS	Provide a greater understanding of effects of Caloosahatchee River Estuary (CRE) discharges on large areas of offshore benthic habitats by combining improved quantitative analyses of existing data (simulation modeling) with benthic nutrient flux and monitoring focused on both biotic and physicochemical aspects of the ecosystem.
209	Water Quality - sucralose	SWS	Provide a greater understanding of effects of Caloosahatchee River Estuary (CRE) discharges on large areas of offshore benthic habitats by combining improved quantitative analyses of existing data (simulation modeling) with benthic nutrient flux and monitoring focused on both biotic and physicochemical aspects of the ecosystem.
210	Water Quality - temperature	SWS	Provide a greater understanding of effects of Caloosahatchee River Estuary (CRE) discharges on large areas of offshore benthic habitats by combining improved quantitative analyses of existing data (simulation modeling) with benthic nutrient flux and monitoring focused on both biotic and physicochemical aspects of the ecosystem.

211	Water Quality - total nitrogen		SWS	Provide a greater understanding of effects of Caloosahatchee River Estuary (CRE) discharges on large areas of offshore benthic habitats by combining improved quantitative analyses of existing data (simulation modeling) with benthic nutrient flux and monitoring focused on both biotic and physicochemical aspects of the ecosystem.
212	Water Quality - total phosphorus		sws	Provide a greater understanding of effects of Caloosahatchee River Estuary (CRE) discharges on large areas of offshore benthic habitats by combining improved quantitative analyses of existing data (simulation modeling) with benthic nutrient flux and monitoring focused on both biotic and physicochemical aspects of the ecosystem.
178	Wildlife	Species Richness	GE	Record opportunistic observations (including via camera traps) of imperiled and locally important species.
309		Species Abundance - Evaluate changes in the prevalence of mammals (by comparing current vs previous surveys) in areas within and adjacent LOX NWR	GE	Understanding Greater Everglades mammal communities within and adjacent to the ARM Loxahatchee National Wildlife Refuge
574	#REF!	Other - Mercury level	GE	Mercury level in wading bird feathers by individual and colony

Monitoring Objectives	Connection to CERP Purpose, Goals, and Objectives	Monitoring Frequency	Start Date
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	2010
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	1998
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	2010
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	1988
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	2000
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	2003
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	2010
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	2001
Monitoring used for population trend assessments and harvest quota establishment.	High	every 5 years	2006
Monitoring used for population trend assessments and harvest quota establishment.	High	every 5 years	2017
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	2003
Monitoring used for population trend assessments and harvest quota establishment.	High	every 5 years	2000
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	2000
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	2003
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	1978
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	1978
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	1978
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	1974
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	1988

Monitoring used for population trend assessments and harvest quota establishment.	High	annually	1988
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	1991
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	1994
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	1991
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	1990
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	2003
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	1988
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	2000
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	2003
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	1985
Monitoring used for population trend assessments and harvest quota establishment.	High	every 5 years	2021
Monitoring used for population trend assessments and harvest quota establishment.	High	every 5 years	2007
Monitoring used for population trend assessments and harvest quota establishment.	High	every 5 years	2009
Monitoring used for population trend assessments and harvest quota establishment.	High	every 5 years	2010
Monitoring used for population trend assessments and harvest quota establishment.	High	every 5 years	2010
Monitoring used for population trend assessments and harvest quota establishment.	High	annually	2000

	High	other - continuously	2009
	High	other - continuously	2020
The measurable objective of this project is to monitor changes in alligator populations resulting from restoration over short- (body condition), medium- (distribution, relative density) and long-term temporal scales.	High	biannually - dry season/wet season	2017
Conduct long term, landscape level monitoring of trends in alligator reproduction and relate findings to changing hydrologic conditions.	High	wet season	1985
	High		
evaluate the relative distribution, abundance, and demographic structure of crocodilians in various habitats in relation to water levels and salinities and stable isotopes for Southern Florida	High	Other - peak wet and dry season	2003
The FWC (via FWC staff observations and the public observations via the Exotic Species Hotline) on collaboration with the University of Georgia's EddMAPs (IveGot1 application) record opportunistic observations of nonnative wildlife throughout the state of Florida. Both entities share data.	Moderate	daily	
Long term University of Florida's Everglades Invasive Reptile and Amphibian Management Program conduct nonnative wildlife surveys on Holey Land, Rotenberger, and Everglades and Francis S. Taylor Wildlife Management Areas.	Moderate	annually	2011
To establish the spatial distribution of mercury levels in invasive species (Burmese pythons and Argentine black and white tegus) across the Great Everglades.	Moderate	Other - Annually or when samples are available	2022
To detect newly emerging invasive plant species in the National Parks of South Florida along the most likely routes, or "corridors of invasiveness" (i.e., trails, roadways, campgrounds, and boat launches).	Moderate	annually	2011

Lionfish distributions and removal	Moderate		
Remove invasive tegus from areas near the border of EVER and identify trends in target and non-target captures, including native species.	Moderate	Daily - M-F February-October	2013
To locate and capture tegus in the area in order to euthanize. The control of tegus is needed because they are a potential predator of eggs of the American crocodile and a threat to wildlife in the area.	Moderate	daily	
The measurable objective of this project is removal monitoring of the invasive Black and White Tegu Lizard over time for management to protect park resources	Moderate	Other - daily during active season February - October	2014
The measurable objective of this project is to monitor vital rates of Burmese pythons over time to inform future management of this invasive species (e.g., synthetic biological control).	Moderate	Other - variable depending on metric (daily to every other year)	2018
Varied research on pythons that includes telemetry, vital rates, and other life history traits.	Moderate	Other - Continuous	2008
Long term nonnative plant monitoring to find new species and infestations on Holey Land, Rotenberger, and Everglades and Francis S. Taylor Wildlife Management Areas. Also, post monitoring after removal on all areas to evaluate effectiveness.	Moderate	annually	1980
Long term nonnative plant monitoring to find new species and infestations on Dinner Island Ranch, Fish-eating Creek, Spirit of the Wild, and Okaloacoochee Slough WMAs.	Moderate	annually	
Long term nonnative plant monitoring to find new species and infestations on Dinner Island Ranch, Fish-eating Creek, Spirit of the Wild, and Okaloacoochee Slough WMAs.	Moderate	annually	
Long term nonnative plant monitoring to find new species and infestations on Jones/Hungryland WEA and J.W. Corbett WMA.	Moderate	annually	
Detect early establishment of invasive plant species in likely "corridors of invasion" on state-managed lands within the Greater Everglades module.	Moderate	annually	2019

Monitor changes in species abundance (measured by frequency and percent canopy cover) resulting from land management activities and/or restoration efforts over medium (five-year) and long-term (decadal) scales.	Moderate	every 5 years	1995
	Moderate		
Meet data sufficiency for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code) and EPA CWA Section 303(d) surface water assessments. Meets data sufficiency for Total Maximum Daily Loads (TMDLs) development in impaired waterbody segments.	Moderate	other - Two events	2002
Detect, assess size of priority invasive plant infestations and estimate abundance across the landscape	Moderate	every 5 years	Previous variation of SRFs started in 1993 but methods not identical
Invasive species distribution and response to treatment	Moderate		
Invasive species distribution and response to treatment	Moderate		
Detect, assess size of priority invasive plant infestations and estimate abundance across the landscape	Moderate	every 5 years	Previous variation of SRFs started in 1993 but methods not identical
Survey presence of Lygodium on tree islands in 3A/3B and relate to environmental conditions of tree islands.	Moderate		2006
	High		

The measurable objective of this project is to monitor changes in fish communities, sport fish populations and evaluate changes in sport fish fisheries in the L-35 canal.	High	other - The canal has typically been sampled every 2 to 3 years	1990
The measurable objective of this project is to monitor changes in fish communities, sport fish populations and evaluate changes in sport fish fisheries in Lake Okeechobee, Lake Trafford, and the L-67 A canal.	High	annually	2006
The measurable objective of this project is to document fish communities in areas where habitats may be altered as freshwater flows change in the Everglades.	High	biannually - dry season/wet season	2020
The measurable objective of this project is to document fish communities in areas where habitats may be altered as freshwater flows change in the Everglades.	High	biannually - dry season/wet season	2020
Quantitatively determine condition of resources across space with known confidence intervals and detect change in conditions from previous survey events.	High		1995
To monitor the spatial and temporal status of mercury and methylmercury in gambusia across the Greater Everglades, and to link these distributions to the primary water quality and hydrologic drivers	Moderate	annually	1996
	High	other - continuously	2009

	High	other - continuously	2020
 This project is designed to meet the following objectives: 1) Evaluate the spatial patterns of maximum aquatic fauna densities in the landscape. 2) Evaluate inter-annual variation in maximum aquatic fauna densities. 3) Evaluate correlates between maximum aquatic fauna densities and local site characteristics, hydrological patterns, and regional aquatic fauna population size. 4) Evaluate correlates between maximum aquatic fauna densities and wading bird foraging and nesting patterns. 5) Provide summary analysis of wading bird foraging and nesting patterns in response to aquatic fauna densities and hydrologic changes. 	High	dry season - annually	2005
 I- Establish pre-CERP (Everglades Scale) and CERP project (regional/local scale) reference conditions and variability in primary production (periphyton) and aquatic fauna (prey). II- Determine the status and trends of periphyton and aquatic fauna populations over short, medium, and long-term temporal and spatial scales. III- Detect unexpected responses of the ecosystem (periphyton oligotrophic nutrient status and wet season aquatic fauna production) to changes in stressors resulting from CERP activities, climate change, and sea level rise. IV- Support scientific investigations and tool development designed to increase ecosystem understanding, cause and effect, and interpret unanticipated results in primary producers and wet season aquatic fauna performance. V- Prepare summary report of data, analysis, and conclusions related to study objectives for each funded period of performance and final synoptic report at the conclusion of this study. These reports will be disseminated by USACE for public education and potential academic use. 	High	wet season - annually	2005
	Moderate		
	High		

Objective 1: Determine statistically robust annual estimates of native and nonnative	Moderate	annually - ~ February through	2022 - Base Year
apple snail distribution, density, and egg cluster production in the Everglades wetlands		April and into July as needed	(5 Year Contract)
ecosystem, with a focus on WCA-3A and in Everglades kite foraging areas when			
present and assess how conditions and management actions affect these estimates.			
Objective 2: Determine the habitat characteristics, hydroperiod, gage-specific			
seasonal water levels and transitions, recession and ascension rates, and other factors			
that are most supportive of apple snail density, survival, recruitment, and egg cluster			
production and survival; and estimate values of these parameters that result in			
maximum apple snail densities and maximum densities/per capita egg production			
(PCE) within the Everglades wetlands ecosystem.			
Objective 3: Provide data in support of scientific studies of inter-relationships among			
apple snail demography, hydrologic regime, habitat characteristics, and other factors.			
Objective 4: Synthesize new data with existing information to provide annual updates			
on the factors that are most supportive of apple snail density, survival, recruitment,			
and egg cluster production and survival. Each year, summarize apple snail responses			
to management and conditions and provide specific management recommendations			
to increase apple snail density and reproductive success in the Greater Everglades			
wetlands ecosystem.			
	High	other - seasonally	2020
	High	other - seasonally	2004

	High	other - seasonally	2019
	High	other - seasonally	2016
			2010
Long term Bachman's sparrow monitoring on Hungryland WEA.	High	annually	2019
Long term monitoring of eagle nests on Everglades and Francis S. Taylor Wildlife	High	annually	
Management Areas.	i iigii	annually	
Bald eagle nest monitoring on Dinner Island Ranch WMA.	High	annually	2015
		annoany	2013
Bald eagle nest monitoring on J.W. Corbett WMA.	High	annually	2010
	Ŭ		
Bald eagle nest monitoring on DuPuis WEA.	High	annually	2010
Bald eagle nest monitoring on CREW WEA.	High	annually	
Collect presence data on various bat species that occur on Holey Land, Rotenberger,	High	other - once (may be duplicated	2017
and Everglades and Francis S. Taylor Wildlife Management Areas.		within next 10 years	
Collect presence data on various bat species that occur on Spirit of the Wild,	High	annually	
Okaloacoochee, Fish-eating Creek, and Dinner Island Ranch Wildlife Management			
Areas.			
Collect presence data on various bat species that occur on Southern Glades Wildlife	High	annually	2020
and Environmental Area.			
Collect presence data on various bat species that occur on J.W. Corbett Wildlife	High	annually	
Management Area and Jones/Hungryland Wildlife and Environmental Area.			
Collect presence data on various bat species that occur on CREW WEA.	High	annually	
Miss-netting for bats to document presence of the federally endangered Florida	High	other - Just a couple of sampling	2012
bonneted bat (as well as other bat species) sh on CREW WEA.		events	2012
bonneteu bat las wen as other bat species, sil on CREW WEA.		EVEIILS	

Camera trapping to determine presence/absence of Big Cypress fox squirrels on Dinner Island Ranch WMA.	High	other - Just a couple of sampling events	2018
Camera trapping to determine presence/absence of Big Cypress fox squirrels on CREW WEA.	High	other - Just a couple of sampling events	2018
Camera trapping to determine presence/absence of Big Cypress fox squirrels on Okaloacoochee Slough WMA.	High	other - Just a couple of sampling events	2018
Camera trapping to determine presence/absence of Big Cypress fox squirrels on Spirit of the Wild WMA.	High	other - Just a couple of sampling events	2018
Collect presence during breeding various bird species on Holey Land Wildlife Management Area.	High	annually	2021
Collect presence during breeding various bird species on Big Cypress WMA.	High	annually	
Collect presence during breeding various bird species on CREW WEA.	High	annually	
Collect presence data on various bird species that occur on Holey Land, Rotenberger, and Everglades and Francis S. Taylor Wildlife Management Areas.	High	other - once (may be duplicated within next 10 years	2022
Christmas Bird Count surveys to document presence of various birds on Okaloacoochee Slough WMA.	High	annually	2018
Christmas Bird Count surveys to document presence of various birds on Spirit of the Wild WMA.	High	annually	2018
Christmas Bird Count surveys to document presence of various birds on Dinner Island Ranch WMA.	High	annually	2023
Collect presence data on various bird species that occur on Okaloacoochee Slough WMA.	High	other - once (may be duplicated within next 10 years	2021
Collect presence data on various bird species that occur on Spirit of the Wild WMA.	High	other - once (may be duplicated within next 10 years	2022
Collect presence during breeding season for the federally-Threatened black rail on Everglades and Francis S. Taylor Wildlife Management Area.	High	annually	2021
Collect presence during breeding season for the federally-Threatened black rail on J.W. Corbett WMA.	High	annually	2019
Collect presence during breeding season for the federally-Threatened black rail on Jones/Hungryland WEA.	High	annually	2020

	Moderate	other - continuously	2009
Rangewide sparrow survey	High	annually - ~ April 1 through May	2022 - Base Year
		31 and into early June	(5 Year Contract)
	High	annually	
Annual survey during nesting season	High	dry season - daily	1981, 1992 to present
Annual survey during nesting season	ingn	ury season - dany	1901, 1992 to present
	Moderate	daily	varies
	Moderate	hourly	varies
	Moderate	monthly	1900
Collect breeding territory and nesting data for the federally-Threatened crested	High	annually	2015
caracara on Holey Land and Rotenberger Wildlife Management Areas.			
Collect breeding territory and nesting data for the federally-Threatened crested	High	annually	2014
caracara on Dinner Island Ranch WMA.			1

Collect breeding territory and nesting data for the federally-Threatened crested caracara on Spirit of the Wild WMA.	High	annually	2022
Collect breeding territory and nesting data for the federally-Threatened crested caracara on Okaloacoochee WMA.	High	annually	2019
Collect breeding territory and nesting data for the federally-Threatened crested caracara on Fish-eating Creek WMA.	High	annually	2012
Meet data sufficiency for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code) and EPA CWA Section 303(d) surface water assessments. Meets data sufficiency for Total Maximum Daily Loads (TMDLs) development in impaired waterbody segments.	Moderate	other - Different for every waterbody segment (WBID). Typically 5-6 events annually for 2 - 5 years.	2002
Meet data sufficiency for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code) and EPA CWA Section 303(d) surface water assessments. Meets data sufficiency for Total Maximum Daily Loads (TMDLs) development in impaired waterbody segments.	Moderate	other - Different for every waterbody segment (WBID). Typically 5-6 events annually for 2 - 5 years.	2002
Meet data sufficiency for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code) and EPA CWA Section 303(d) surface water assessments. Meets data sufficiency for Total Maximum Daily Loads (TMDLs) development in impaired waterbody segments.	Moderate	other - Different for every waterbody segment (WBID). Typically 5-6 events annually for 2 - 5 years.	2002

Objective 1: Estimation of survival and assessment of the effect of hydrology on	High	annually - ~ January through June	2020 - Base Year
survival.		as needed	(5 Year Contract)
Objective 2: Estimation of reproductive parameters and assessment of the effect of hydrology on reproduction.			
Objective 3: Estimation of population size and population growth rate (based on retrospective analyses).			
Objective 4: Identification of causes of decline and stalled recovery.			
Objective 5: Estimation of stochastic population growth rate (based on prospective analyses).			
Objective 1: To determine causes of mortality in juvenile snail kites. Assess whether	High	annually - ~ April through	2020 - Base Year
typical movement behaviors can be defined for a variety of environmental conditions;		September	(5 Year Contract)
Objective 2: To identify threats that are most important to juvenile snail kite survival;			
Objective 3: To provide data on potential population sinks; and,			
Objective 4: To provide specific management recommendations for determining when and where to focus habitat management activities in order to increase population size through reduced mortality of young.			
The FWC on collaboration with the University of Florida conducts nest monitoring and on certain cases chick banding on Holey Land, Rotenberger, and Everglades and Francis S. Taylor Wildlife Management Areas wherever snail kites have large nesting aggregations.	High	other - SNKI crew does most, some years staff assist depending on nesting activity and location	
To track and record fire occurrence on the landscape	Moderate	other - as fires occur	1948
To track and record fire occurrence on the landscape	Moderate	other - as fires occur	1948

 Monitor seasonal status and trends of both small and large fish and large invertebrates in the wet prairie and slough habitats Integrate with the EVER Long-term monitoring project Maintain a long-term dataset (Since 1996) for freshwater aquatic prey base Assess the influence of CERP restoration and non-CERP water management actions by using the long-term dataset in Before, After, Control, Impact (BACI) designs. Develop and apply performance measures used to model reference conditions for natural resources assessments and predictive assessments for restoration planning. Evaluate the influence of biological stressors (e.g. invasive species, sea level rise) in BACI design. Maintain a long-term reference collection of samples and specimens for future evaluations. 	High	other - seasonal and transition periods 5 times per year	1996
 Monitor seasonal status and trends of small and large invertebrates in the wet prairie and slough habitats of northern SRS Integrate with the "Freshwater fish monitoring in WCA3 and EVER project. Maintain a long-term dataset (Since 1985 or 1978) for freshwater aquatic prey base. Assess the influence of CERP restoration and non-CERP water management actions by using the long-term dataset in Before, After, Control, Impact (BACI) designs. Develop and apply performance measures used to model reference conditions for natural resources assessments and predictive assessments for restoration planning. Evaluate the influence of biological stressors (e.g. invasive species, sea level rise) in BACI design. Maintain a long-term reference collection of samples and specimens for future evaluations. 	High	other - seasonal and transition periods 5 times per year	1985 as is with 2 plots dating back to 1978

 Assess the influence of redistributing water toward NESRS via COP water management on surface water Hg and methylation cycling drivers and Hg burden in fishes in SRS. Assess the influence of inflows into SRS along the marsh/mangrove coastal interface on Hg cycling. Assess the difference between wet and dry season water Hg dynamics and burden in fishes SRS. Determine need and best approach to monitoring Hg in the marshes on a longer- term basis. Monitor the distribution of native and nonnative fishes and crayfish in EVER. 	High	biannually	2023
Measure the area covered by all known Florida bristle fern colonies: This activity was carried out in October/November 2021 and reported on previously. The Miami-Dade measurements will be repeated in September 2023. Increase knowledge of the fern's microhabitat needs: 18 Kestrel D2 Drop temperature and humidity dataloggers were deployed at occupied and potentially occupied Florida bristle fern habitat throughout the subspecies' range between October 2021 and January 2022. A second round of dataloggers were deployed at the private property which was the site of the pilot introduction (Blakely property), and at Camp Owaissa Bauer. In January 2023, 1-2 dataloggers will be re-deployed at R. Hardy Matheson Preserve, to enable comparisons with this site, which initially appeared to be the best of the northern sites, with the other Round 2 sites.	-	other - Seasonally (October- January)	2021
Miss-net surveys to determine presence of the federally-Endangered Florida grasshopper sparrow on National Audubon Society's Corkscrew Swamp dry prairie unit. This effort also provides presence data for other sparrows.	High	annually	2016
	High	other - 15 minute time-series	1950
Long term frog and toad monitoring on CREW WEA part of the FrogWatch USA program.	High	annually	
Gopher tortoise monitoring on various units monitoring population trend and effects of habitat management.		other - depending on resources and management	

The Florida Natural Areas Inventory maps out the natural communities on Holey Land, Rotenberger, and Everglades and Francis S. Taylor Wildlife Management Areas.	High	every 5 years	2019
The Florida Natural Areas Inventory maps out the natural communities on Dinner Island Ranch, Fish-eating Creek, Spirit of the Wild, and Okaloacoochee Slough WMAs.	High	every 5 years	
The Florida Natural Areas Inventory maps out the natural communities on Jones/Hungryland WEA and J.W. Corbett WMA.	High	every 5 years	
	High	biannually	2000
	High	other - minute	2004
	Moderate	other - periodically	2001

This project continues to support the USGS eddy-covariance (EC) flux network to quantify annual and inter-annual variability in water, energy, and biogeochemical cycling within Greater Everglades Ecosystems.	High	other - Continuous	2011
Collect presence during breeding season for imperiled marsh birds on J.W. Corbett WMA.	High	annually	2012
Collect presence during breeding season for imperiled marsh birds on Jones/Hungryland WEA.	High	annually	2014
Collect presence data for mega-fauna (focusing on panthers and bears) using game cameras on Big Cypress WMA. This study also gets good presence data for a variety of wildlife captured on cameras.	High	annually	2020
Quantitatively determine condition of resources across space with known confidence intervals and detect change in conditions from previous survey events.	Moderate		1995
	Moderate	monthly	2001

	Moderate	quarterly	2019
	Moderate	other - minute	various
			Various
Spring whistle count surveys for northern bobwhite quail on CREW WEA.	High	annually	
			2212
Fall covey count surveys on Spirit of the Wild WMA.	High	annually	2018
Meet data sufficiency for Impaired Waters Rule (Chapter 62-303, Florida	Moderate	other - Different for every	2002
Administrative Code) and EPA CWA Section 303(d) surface water assessments.		waterbody segment (WBID).	
Meets data sufficiency for Total Maximum Daily Loads (TMDLs) development in		Typically 5-6 events annually for 2	
impaired waterbody segments.		- 5 years.	

	Moderate	monthly	2000
To monitor the spatial and temporal status of mercury and methylmercury in surface waters of the Greater Everglades, and to link these distributions to the primary water quality and hydrologic drivers	Moderate	annually	1995
Meet data sufficiency for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code) and EPA CWA Section 303(d) surface water assessments. Meets data sufficiency for Total Maximum Daily Loads (TMDLs) development in impaired waterbody segments.	Moderate	other - Two events	2002
 Measure tissue phosphorus in periphyton and vascular plants in transects abutting new and anticipated construction to monitor nutrient dynamics in these inflow areas along the boundary of EVER. Gather field data on fish assemblage structure and movement patterns along the eastern boundary of and in reference areas of EVER. Use field monitoring data to assess the influence of water management structures and operations by interpreting performance measures of nutrient inputs and hydration of marshes, fish assemblage structure, and colonization of EVER by non- native fishes. 		other - Phosphorus once per year, aquatic fauna approximately every other month.	2003
Meet data sufficiency for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code) and EPA CWA Section 303(d) surface water assessments. Meets data sufficiency for Total Maximum Daily Loads (TMDLs) development in impaired waterbody segments.		other - Different for every waterbody segment (WBID). Typically 5-6 events annually for 2 - 5 years.	2002

	Moderate	monthly	2000
Collect presence data on various rare plant species that occur on Holey Land,	High	other - once (may be duplicated	2014
Rotenberger, and Everglades and Francis S. Taylor Wildlife Management Areas. This		within next 10 years	
was conducted by the Florida Natural Areas Inventory.		,	
Collect presence data on various rare plant species that occur on J.W. Corbett WMA.	High	other - once (may be duplicated	2021
		within next 10 years	
Collect presence data on various rare plant species that occur on Jones/Hungryland	High	other - once (may be duplicated	2022
WEA.		within next 10 years	
Long term red-cockaded woodpecker population monitoring on Big Cypress Wildlife	High	quarterly	
Management Area.			
Leve terms and exclosed advector development with the result of the state of the st		and a star star	
Long term red-cockaded woodpecker population monitoring on J.W. Corbett Wildlife Management Area.	High	quarterly	
Long term red-cockaded woodpecker population monitoring on Jones/Hungryland	High	quarterly	
Wildlife and Environmental Area.	Ŭ	. ,	
Long term red-cockaded woodpecker population monitoring on DuPuis Wildlife and	High	quarterly	
Environmental Area.			
Long term red-cockaded woodpecker population monitoring on Picayune Strand	High	quarterly	
Wildlife Management Area.			
Collect presence data on various reptiles and amphibians that occur on Holey Land,	High	other - once (may be duplicated	2020
Rotenberger, and Everglades and Francis S. Taylor Wildlife Management Areas.		within next 10 years	
Coverboard surveys for listed sand skink and other reptiles and amphibians.	High	annually	2018
Collect presence data on various reptiles and amphibians that occur on Dinner Island	High	other - once (may be duplicated	2020
Ranch WMA.		within next 10 years	
Reptile and amphibian inventory to document presence of various species on	High	other - Will be repeated in 2028	2014
Okaloacoochee Slough WMA.		l	

	High	other - annually, bimonthly	2000
Managers use the results to evaluate and minimize the effects of human activities	Low/none	annually - nesting season	1989
(e.g., coastal construction, beach renourishment, and recreation) on turtles and their			
nests and identify important areas for enhanced protection or land acquisition.			
Managers use the results to evaluate and minimize the effects of human activities	Low/none	annually - nesting season	1979
(e.g., coastal construction, beach renourishment, and recreation) on turtles and their			
nests and identify important areas for enhanced protection or land acquisition.			

Collect presence data on various small mammal species that occur on Jones/Hungryland WEA.	High	other - once (may be duplicated within next 10 years	2022
Part of state-wide population monitoring effort cofounded by USACE and FWC. SFWMD and FWC alternate funding of listed project areas, USACE funds other areas of state.	Low/none		1994
	Moderate	annually	2000
	Moderate	annually	2004
	High	annually	various
The objective is to monitor rates of soil accretion and erosion to determine if soil processes are keeping pace with the rate of relative sea level rise.	High	biannually	2011
The objective is to monitor rates of soil accretion and erosion to determine if soil processes are keeping pace with the rate of relative sea level rise.	High	biannually	2011

Quantitatively determine condition of resources across space with known confidence intervals and detect change in conditions from previous survey events.	High		1995
Meet data sufficiency for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code) and EPA CWA Section 303(d) surface water assessments. Meets data sufficiency for Total Maximum Daily Loads (TMDLs) development in impaired waterbody segments.	Moderate	other - Two events	2002
Meet data sufficiency for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code) and EPA CWA Section 303(d) surface water assessments. Meets data sufficiency for Total Maximum Daily Loads (TMDLs) development in impaired waterbody segments.	Moderate	other - Two events	2002
Monitor changes in mangrove wetland elevation related to rising sea levels	High	annually	2012

Collect necting activity for swellow toiled lites /a species of speciel concern on Uligh	
Collect nesting activity for swallow-tailed kites (a species of special concern on Florida) on Big Cypress WMA.High2021	
Collect nesting activity for swallow-tailed kites (a species of special concern on High annually Annua	
Florida) on CREW WEA.	
Swallow-tailed kite roost monitoring on the largest pre-migration roost site in the High annually 1988	
state of Florida on Fish-eating Creek WMA and adjacent private landowner.	
Meet data sufficiency for Impaired Waters Rule (Chapter 62-303, Florida Moderate of the contrast of the contra	
Administrative Code) and EPA CWA Section 303(d) surface water assessments.	
Meets data sufficiency for Total Maximum Daily Loads (TMDLs) development in Typically 5-6 events annually for 2	
impaired waterbody segments.	

Long term tree island restoration and enhancement monitoring to evaluate effectiveness on Holey Land, Rotenberger, and Everglades and Francis S. Taylor Wildlife Management Areas.	High	other - annually	1980
Determine ability to restore structure and function of degraded habitat via active management techniques & assess sustainability of any subsequent improvement	High		2006
Understand the response of the wetland birds to active marsh improvement treatments	High		2006
Evaluate and ensure the success of CEPP project objectives in restoring sheetflow and the ridge and slough landscape mosaic, while minimizing excessive localized nutrient loading.	High		2020 (CEPP-S in WCA3B/3A); 2010 (DPM study area, within CEPP-S)
Long term population monitoring on Holey Land, Rotenberger, and Everglades and Francis S. Taylor Wildlife Management Areas. Staff have conducted aerial surveys most years since 1990 on Everglades and Francis S. Taylor Wildlife Management Area and since 1995 on Holey Land and Rotenberger Wildlife Management Areas. Some portions of the area are not surveyed annually, but on a rotating basis, due to consistent low numbers of deer. These data are used to provide annual vehicle permit quota recommendations, or other harvest recommendations.	High	other - some portions annually, some rotationally	1990
Collect number of individuals using levees and evidence of browse on tree islands during high water events on Holey Land, Rotenberger, and Everglades and Francis S. Taylor Wildlife Management Areas. These data are used to provide ecological recommendations and technical assistance to partnering agencies for water management decisions	High	other - weekly or biweekly during high water events	2005
Population monitoring on Okaloacoochee Slough WMA to estimate quota limitations for hunting on newly acquired parcels.	High	other - some portions annually, some rotationally	2021
Collect abundance data for white-tailed deer via camera trapping on Big Cypress WMA. This study also gets good presence data for a variety of wildlife captured on cameras.	High	annually	2021
Post prescribed burn monitoring to evaluate effectiveness on Holey Land, Rotenberger, and Everglades and Francis S. Taylor Wildlife Management Areas. Staff use visual observations and photo points to monitor how habitat recovers and is enhanced due to burning as well as wildlife that use these areas.	High	other - After prescribed fire event	2009

Post prescribed burn monitoring to evaluate effectiveness on Dinner Island Ranch,	High	annually	
Fish-eating Creek, Spirit of the Wild, and Okaloacoochee Slough WMAs.			
Staff monitor and maintain wood duck boxes to help increase nesting opportunities	High	biannually	2005
on Francis S. Taylor Wildlife Management Area.			
Objective 1: Collection of field data required to evaluate wood stork reproductive	High	annually - ~ January through June	2020 - Base Year
responses in the Everglades using standardized techniques with modifications to allow		as needed	(5 Year Contract)
more accurate assessment as appropriate			
Objective 2: Collection of additional field data to evaluate the response of other			
wading bird species to hydrologic modifications using similar protocols – as the			
opportunity presents itself.			
Objective 3: Evaluate collected data to determine impacts of hydrologic changes on			
wood stork reproductive success. Provide recommendations for ecosystem			
alternations that would favor preservation and protection of existing wood stork			
populations.			
Quantitatively determine condition of resources across space with known confidence	High		1995
intervals and detect change in conditions from previous survey events.			
	High		
	High	other - bimonthly	2001

	High	other - bimonthly	2003
	High	other - quarterly, annually	2000
	High	annually	2001
The project objective is to characterizing water quality in L31W, near the canal, down	High	monthly	2012
Taylor Slough to Florida Bay. Data are used to assess the status and changes in			
operational influence on Taylor Slough ecology.			
			l

This study is designed to monitor macrophytes, floc, periphyton and benthic mat characteristics to determine if alterations to water management of the UTS region causes changes to: 1) species compositions and community structure of the algal communities 2) nutrient composition of sawgrass, periphyton, and benthic mat communities, and 3) the rate of periphyton accumulation.	High		2017
1) Identify any basins in the northwest section of Big Cypress National Preserve where periphyton community structure and periphyton TP content are different from an oligotrophic (low-nutrient) and unimpacted community signal. 2) Document any temporal and/or spatial changes in the periphyton community structure and periphyton TP content showing progression towards an oligotrophic, unimpacted condition or a eutrophic (high-nutrient), impacted condition.	High	annually	2019
The objectives are to ensure that if any adverse impacts occur to the Picayune Strand State Forest, Collier-Seminole State Park, or other potentially impacted areas prior to the full restoration, adaptive management will reduce them.	High	quarterly	2023
Meet data sufficiency for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code) and EPA CWA Section 303(d) surface water assessments. Meets data sufficiency for Total Maximum Daily Loads (TMDLs) development in impaired waterbody segments.	High	other - 4 events, quarterly for 3 consecutive years.	2002
	High		
	High		

Meet data sufficiency for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code) and EPA CWA Section 303(d) surface water assessments. Meets data sufficiency for Total Maximum Daily Loads (TMDLs) development in impaired waterbody segments.	High	other - Different for every waterbody segment (WBID). Typically 5-6 events annually for 2 - 5 years.	2002
Meet data sufficiency for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code) and EPA CWA Section 303(d) surface water assessments. Meets data sufficiency for Total Maximum Daily Loads (TMDLs) development in impaired waterbody segments.	High	other - Two events	2002
	High		
Assess areal coverage of SAV by species across STA system to assess changes in abundance/species changes related to hydrology and/or water quality	High High		2000
	High		

The specific objectives of our ongoing research are:	High	annually - wet season when	2005
1) To characterize the relationship between hydrologic regime and tree demography		islands are accessible via airboat	2005
in the hardwood hammock portions of tree islands.			
2) To assess change in the structure and composition of both swamp forest and			
hardwood hammock.			
3) To develop a tree island vegetation classification scheme based on canopy and			
understory vegetation types.			
4) To develop and validate methods that consistently differentiate tree island			
vegetation assemblages, and that delineate their boundaries from spectral signatures			
of bi-seasonal satellite data and aerial photography.			
5) To detect changes and trends in the relative proportion of different tree island			
vegetation types.			
6) To investigate the correlation of vegetation change to changes in hydrological			
regime.			
Track growth rates and control for lygodium	High		2005
Objective 1: Collect vegetation data in areas currently identified as suitable habitat for	High	annually~ March through June	2022 - Base Year
the CSSS as well as areas historically occupied by CSSS with the intent of comparing			(5 Year Contract)
data to prior baseline			
information.			
Objective 2: To determine the trajectory of vegetation change in response to ongoing			
water management			
activities and restoration initiatives in areas identified as suitable habitat for the CSSS.			
Dest monitoring for mochanical treatmonts was for sources restarction to such that	1 lizh	annuallu	2016
Post monitoring for mechanical treatments use for sawgrass restoration to evaluate	High	annually	2010
effectiveness on Holey Land Wildlife Management Area. Native plantings and long term monitoring of plantings, including cage maintenance	Ligh	annually	1997
on Holey Land, Rotenberger, and Everglades and Francis S. Taylor Wildlife	High	annually	122/
Management Areas.			
Native plantings and long term monitoring of plantings, including cage maintenance	Ligh	annually	
	High	annually	
on Dinner Island Ranch, Spirit of the Wild, and Okaloacoochee Slough WMAs.			
-			

The objectives are to ensure that if any adverse impacts occur to the Picayune Strand State Forest, Collier-Seminole State Park, or other potentially impacted areas prior to the full restoration, adaptive management will reduce them.	High	quarterly	2023
Quantitatively determine condition of resources across space with known confidence intervals and detect change in conditions from previous survey events.	High		1995
	High	annually	2002
	High	other - variable time intervals, depending on the tree species	1995

	High	monthly	2001
	High	other - bimonthly	2000
Meet data sufficiency for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code) and EPA CWA Section 303(d) surface water assessments.	High	other - Two events	2002
Meets data sufficiency for Total Maximum Daily Loads (TMDLs) development in			
impaired waterbody segments.			
	High		
The specific objectives of the study are: 1) To characterize recent vegetation	High	other - dry season/wet season	2005
composition along the marl prairie-slough gradient, 2) To identify boundaries between		, .	
different vegetation types, and 3) To assess changes in vegetation structure and composition associated with changes in hydrology resulting from CERP restoration			
projects.			

 The specific objectives of the proposed work are: To determine extant reference conditions for each of the performance measures described above (including variability of those measures in time and space). To establish present status of landscape performance measures in areas of historic ridge-slough landscape patterning, identify spatial and temporal trends of those performance measures, and quantify their relationships to the present hydrologic regime. To detect unanticipated changes in ecosystem structure and processes that result from hydrologic management or manipulation, CERP restoration activities, or climatic variation To provide data in support of scientific studies of inter-relationships among vegetation, microtopography, and hydrologic regime that may provide insight into the causes of unanticipated ecosystem responses. 		wet season - Late wet season to early dry season	2009 (start of Cycle 1, currently in Cycle 3)
1) Determine the spatial and temporal movement of the mangrove-marsh ecotone at systematically selected segments. 2) Document the composition of vegetation communities at field verification locations. Collect vegetation data, e.g., composition, percent cover and canopy height of dominant species within herbaceous, shrub, and forest strata, in order to document composition of vegetation communities on both the "mangrove" and "marsh" sides of the ecotone.		other - Every 10 years as new imagery is available	2019
Detecting change in forest vegetation community structure and composition	High	every 5 years	2020

 (1) to map species composition/vegetation patterns and patterns of change along the northern and eastern boundary of ENP at a minimum mapping unit of 16-100 m2 using remote sensing methods; (2) to analyze spatial patterns of change; (3) to estimate the biomass of dominant species vegetation classes and changes in biomass patterns over time. 	High	other - Every 4-6 years	Variable. NESRS vegetation surveys 2012/2013; Vegetation maps 2010/2013; Upper Taylor Slough: Veg maps 2017; Vegetation surveys 2017 Turner River: 1940-2018 digitization
	High	annually	
Map vegetation communities of the WCAs to provide change over time	High		2019
Wading bird nest colony monitoring on L8 Marsh on CREW WEA.	High		
Long term population monitoring for wading bird nesting colonies on Holey Land, Rotenberger, and Everglades and Francis S. Taylor Wildlife Management Areas.	High	annually	
Documenting presence of wading bird nesting colonies on Okaloacoochee Slough WMA for future monitoring.	High	annually	2003
Documenting presence of wading bird nesting colonies on Dinner Island Ranch WMA for future monitoring.	High	annually	2016
Documenting presence of wading bird nesting colonies on Spirit of the Wild WMA for future monitoring.	High	annually	2016
Documenting presence of wading bird nesting colonies on Fish-eating Creek WMA for future monitoring.	High	annually	2016
Wading bird nesting colony monitoring on J.W. Corbett WMA.	High	annually	2015
Wading bird nesting colony monitoring on Hungryland WEA.	High	annually	2023

Objective 1: Provide for annual monitoring of size, location, and species composition	High	dry season	1988
of nesting		,	
aggregations by long-legged wading birds including but not limited to: Great Egrets,			
White Ibis,			
Wood Storks, Roseate Spoonbills, and Snowy Egrets. In addition, provide for enhanced			
monitoring in Everglades National Park (e.g., ground and aerial surveys, analysis of			
turnover and			
super-population estimates)			
Objective 2: Provide annual quantitative information on nest success and nest			
productivity of			
wading birds in the Everglades			
Objective 3: Standardize methods and integrate results from all survey projects			
monitoring			
wading birds in the South Florida ecosystem			
Objective 4: Provide an annual report with species-specific estimates of breeding			
wading birds in			
each colony the Everglades with the aim of a) detecting ecological changes consistent			
with restoration, b) contributing to a much larger southeastern-wide picture of			
wading bird population change.			
Monitor numbers of nesting pairs, timing of nesting (earlier better, esp wood storks),	High	dry season - monthly	Annual reporting via SFWBR
location of nesting (50% in coastal ENP), ratio of visual foragers to tactile foragers			1996 but monitoring for
(more tactile better), and less than 2 year interval of exceptionally large breeding			Wood Storks prior to this
aggregations of white ibis.			
Quantify nesting parameters in real time to help guide operations, develop an	High		~1995
improved understanding of wading bird nesting-hydrology relationships, supplement			
RECOVER monitoring, contribute to Annual Wading Bird Report.			
Quantify foraging and hydrological parameters in real time to help guide apprections	High		2021
Quantify foraging and hydrological parameters in real time to help guide operations,	High		2021
develop an improved understanding of wading bird foraging-hydrology-nesting	High		2021
	High		2021
develop an improved understanding of wading bird foraging-hydrology-nesting	High		2021
develop an improved understanding of wading bird foraging-hydrology-nesting	High		2021
develop an improved understanding of wading bird foraging-hydrology-nesting	High		2021

High		
High		1995
High	other - minute	2000
High		
High	waterbody segment (WBID).	2002
High	hourly	
-	High High High High High	High Image: Constraint of the second sec

To monitor the spatial and temporal status of mercury and methylmercury in surface waters of the Greater Everglades, and to link these distributions to the primary water quality and hydrologic drivers	Moderate	biannually - dry season/wet season	1995
	Moderate	monthly	1989
	Moderate	other - every 3-5 days and monthly	2000
	Moderate	monthly	2000

	Moderate		
	Moderate		
Meet data sufficiency for Impaired Waters Rule (Chapter 62-303, Florida Administrative Code) and EPA CWA Section 303(d) surface water assessments. Meets data sufficiency for Total Maximum Daily Loads (TMDLs) development in impaired waterbody segments.	Moderate	other - Different for every waterbody segment (WBID). Typically 5-6 events annually for 2 - 5 years.	2002
	Moderate		
	Moderate		
	Moderate		

1. What is the direction and magnitude of the trajectory change in the indicators?	Moderate	biannually	2015
What anthropogenic and/or climatic covariates (rainfall, water depth, flow discharges,		s.ay	
etc.) are responsible for driving the change in the ecological indicators? Can these			
directly be linked to CERP/MWD/COP implementation?			
2. What is the spatial extent of the change (if any) in ecological indicators in NESRS			
following implementation of restoration projects? What covariates are driving the			
magnitude of the spatial extent of change in ecological indicators?			
3.How will implementation of MWD/CERP/COP projects affect water quality in terms			
of nutrient inputs, distribution, availability, and effects in the NESRS? Will localized			
nutrient enrichment occur in flow discharge regions of the Park? Will existing nutrient			
enrichment gradients from flow discharge points change following MWD/CERP/COP			
implementation?			
4.How will the plant communities across the landscape be affected by			
MWD/CERP/COP implementation? Will the existing vegetation halos expand into the			
more pristine wetland marshes of the NESRS? Will increased water deliveries from			
MWD/CERP/COP in the NESRS restore historic native white-water lily-dominated			
vegetation communities?			
The project objective is to characterizing water quality in L31W, near the canal, down	Moderate	monthly	2012
Taylor Slough to Florida Bay. Data are used to assess the status and changes in			
operational influence on Taylor Slough ecology.			

Utilize automated water quality sampling of the Sanibel Captiva Conservation	Moderate	2022
Foundations RECON array along with other nutrient data to calculate rates of		
discharge of nutrients from CRE into the Gulf; estimate nutrient loading from coastal		
submarine groundwater discharge, and nutrient flux from remineralization of		
deposited organic matter across the near SW Florida Shelf; and compare nutrient		
fluxes across seasons and contrast them between a near-Caloosahatchee transect and		
one further south to better understand discharge effects on the SW Florida Shelf		
ecosystem.		
Utilize automated water quality sampling of the Sanibel Captiva Conservation	Moderate	2022
Foundations RECON array along with other nutrient data to calculate rates of		
discharge of nutrients from CRE into the Gulf; estimate nutrient loading from coastal		
submarine groundwater discharge, and nutrient flux from remineralization of		
deposited organic matter across the near SW Florida Shelf; and compare nutrient		
fluxes across seasons and contrast them between a near-Caloosahatchee transect and		
one further south to better understand discharge effects on the SW Florida Shelf		
ecosystem.		
Utilize automated water quality sampling of the Sanibel Captiva Conservation	Moderate	2022
Foundations RECON array along with other nutrient data to calculate rates of		
discharge of nutrients from CRE into the Gulf; estimate nutrient loading from coastal		
submarine groundwater discharge, and nutrient flux from remineralization of		
deposited organic matter across the near SW Florida Shelf; and compare nutrient		
fluxes across seasons and contrast them between a near-Caloosahatchee transect and		
one further south to better understand discharge effects on the SW Florida Shelf		
ecosystem.		
Utilize automated water quality sampling of the Sanibel Captiva Conservation	Moderate	2022
Foundations RECON array along with other nutrient data to calculate rates of		
discharge of nutrients from CRE into the Gulf; estimate nutrient loading from coastal		
submarine groundwater discharge, and nutrient flux from remineralization of		
deposited organic matter across the near SW Florida Shelf; and compare nutrient		
fluxes across seasons and contrast them between a near-Caloosahatchee transect and		
one further south to better understand discharge effects on the SW Florida Shelf		
ecosystem.		

Utilize automated water quality sampling of the Sanibel Captiva Conservation	Moderate	2022
Foundations RECON array along with other nutrient data to calculate rates of		
discharge of nutrients from CRE into the Gulf; estimate nutrient loading from coastal		
submarine groundwater discharge, and nutrient flux from remineralization of		
deposited organic matter across the near SW Florida Shelf; and compare nutrient		
fluxes across seasons and contrast them between a near-Caloosahatchee transect and		
one further south to better understand discharge effects on the SW Florida Shelf		
ecosystem.		
Utilize automated water quality sampling of the Sanibel Captiva Conservation	Moderate	2022
Foundations RECON array along with other nutrient data to calculate rates of		
discharge of nutrients from CRE into the Gulf; estimate nutrient loading from coastal		
submarine groundwater discharge, and nutrient flux from remineralization of		
deposited organic matter across the near SW Florida Shelf; and compare nutrient		
fluxes across seasons and contrast them between a near-Caloosahatchee transect and		
one further south to better understand discharge effects on the SW Florida Shelf		
ecosystem.		
Utilize automated water quality sampling of the Sanibel Captiva Conservation	Moderate	2022
Foundations RECON array along with other nutrient data to calculate rates of		
discharge of nutrients from CRE into the Gulf; estimate nutrient loading from coastal		
submarine groundwater discharge, and nutrient flux from remineralization of		
deposited organic matter across the near SW Florida Shelf; and compare nutrient		
fluxes across seasons and contrast them between a near-Caloosahatchee transect and		
one further south to better understand discharge effects on the SW Florida Shelf		
ecosystem.		
Utilize automated water quality sampling of the Sanibel Captiva Conservation	Moderate	2022
Foundations RECON array along with other nutrient data to calculate rates of		
discharge of nutrients from CRE into the Gulf; estimate nutrient loading from coastal		
submarine groundwater discharge, and nutrient flux from remineralization of		
deposited organic matter across the near SW Florida Shelf; and compare nutrient		
fluxes across seasons and contrast them between a near-Caloosahatchee transect and		
one further south to better understand discharge effects on the SW Florida Shelf		
ecosystem.		

Utilize automated water quality sampling of the Sanibel Captiva Conservation	Moderate	2022
Foundations RECON array along with other nutrient data to calculate rates of		
discharge of nutrients from CRE into the Gulf; estimate nutrient loading from coastal		
submarine groundwater discharge, and nutrient flux from remineralization of		
deposited organic matter across the near SW Florida Shelf; and compare nutrient		
fluxes across seasons and contrast them between a near-Caloosahatchee transect and		
one further south to better understand discharge effects on the SW Florida Shelf		
ecosystem.		
Utilize automated water quality sampling of the Sanibel Captiva Conservation	Moderate	2022
Foundations RECON array along with other nutrient data to calculate rates of		
discharge of nutrients from CRE into the Gulf; estimate nutrient loading from coastal		
submarine groundwater discharge, and nutrient flux from remineralization of		
deposited organic matter across the near SW Florida Shelf; and compare nutrient		
fluxes across seasons and contrast them between a near-Caloosahatchee transect and		
one further south to better understand discharge effects on the SW Florida Shelf		
ecosystem.		
Utilize automated water quality sampling of the Sanibel Captiva Conservation	Moderate	2022
Foundations RECON array along with other nutrient data to calculate rates of		
discharge of nutrients from CRE into the Gulf; estimate nutrient loading from coastal		
submarine groundwater discharge, and nutrient flux from remineralization of		
deposited organic matter across the near SW Florida Shelf; and compare nutrient		
fluxes across seasons and contrast them between a near-Caloosahatchee transect and		
one further south to better understand discharge effects on the SW Florida Shelf		
ecosystem.		
Utilize automated water quality sampling of the Sanibel Captiva Conservation	Moderate	2022
Foundations RECON array along with other nutrient data to calculate rates of		
discharge of nutrients from CRE into the Gulf; estimate nutrient loading from coastal		
submarine groundwater discharge, and nutrient flux from remineralization of		
deposited organic matter across the near SW Florida Shelf; and compare nutrient		
fluxes across seasons and contrast them between a near-Caloosahatchee transect and		
one further south to better understand discharge effects on the SW Florida Shelf		
ecosystem.		

Utilize automated water quality sampling of the Sanibel Captiva Conservation	Moderate		2022
Foundations RECON array along with other nutrient data to calculate rates of			
discharge of nutrients from CRE into the Gulf; estimate nutrient loading from coastal			
submarine groundwater discharge, and nutrient flux from remineralization of			
deposited organic matter across the near SW Florida Shelf; and compare nutrient			
fluxes across seasons and contrast them between a near-Caloosahatchee transect and			
one further south to better understand discharge effects on the SW Florida Shelf			
ecosystem.			
Utilize automated water quality sampling of the Sanibel Captiva Conservation	Moderate		2022
Foundations RECON array along with other nutrient data to calculate rates of			
discharge of nutrients from CRE into the Gulf; estimate nutrient loading from coastal			
submarine groundwater discharge, and nutrient flux from remineralization of			
deposited organic matter across the near SW Florida Shelf; and compare nutrient			
fluxes across seasons and contrast them between a near-Caloosahatchee transect and			
one further south to better understand discharge effects on the SW Florida Shelf			
ecosystem.			
Collect presence data on various wildlife that occur on Holey Land, Rotenberger, and	High	daily	2010
Everglades and Francis S. Taylor Wildlife Management Areas.			
Surveys at 15 sampling plots within and adjacent to Loxahatchee NWR and 15 plots	High	biannually	2014
outside of Loxahatchee NWR			
	High		1994

End Date	To be Monitored in the Future?	Comments	Tribe/Agency
Indefinite	Yes	Holey Land WMA, East EAA	FWC
Indefinite	Yes	Loxahatchee NWR (L-40), WCA 1&2	FWC
Indefinite	Yes	Everglades WMA (WCA 2), WCA 1&2	FWC
Indefinite	Yes	WCA 2 (L39), WCA 1&2	FWC
Indefinite	Yes	WCA 2A (L35B), WCA 1&2	FWC
Indefinite	Yes	Loxahatchee NWR (L-39), WCA 1&2	FWC
Indefinite	Yes	Everglades WMA (WCA 3), WCA 3	FWC
Indefinite	Yes	WCA 3A (L67), WCA 3	FWC
Indefinite	Yes	Stormwater Treatment Area 5 (STA 5), West EAA	FWC
Indefinite	Yes		FWC

Indefinite	Yes	FWC
Indefinite	Yes	FWC

Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites.	FIU
		Acoustic telemetry, radio telemetry along SRS 4-6 in ENP	
		These data are not publicly accessible because they could be	
		used to target/exploit sensitive species. They are considered	
		Type II data per the LTER Network Data Access Policy. Detailed	
		metadata from a similar dataset can be found at	
		https://doi.org/10.6073/pasta/8404e7eeccc4622c6175bfa8283	
		639f8	
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites.	FIU
		Acoustic telemetry, radio telemetry along SRS 1-3 in ENP	
		These data are not publicly accessible because they could be	
		used to target/exploit sensitive species. They are considered	
		Type II data per the LTER Network Data Access Policy. Detailed	
		metadata from a similar dataset can be found at	
		https://doi.org/10.6073/pasta/8404e7eeccc4622c6175bfa8283	
		639f8	
Present	Funds Dependent	Surveys are conducted along 4 routes in WCA-3 (A/B) and are	USACE
		conducted twice in the wet season and twice in the dry season.	
Present	Yes		NPS-SFNRC
		No active monitoring specifically for this.	FDEP
procont	Funds Dependent	Continue monitoring of crocodilian population density, body	USGS
present			0303
		condition, juvenile growth and hatchling survival and size distribution throughout the Greater Everglades.	
Present	Yes		FWC
Flesen	165		
Present	Yes		FWC
present	Funds Dependent	Specimens are samples of opportunity collected from the	USGS
		Greater Everglades	
Present	Yes		NPS SFCN

	Yes		NPS Biscayne National Park/UM
Present	Yes	Trapping began in 2013 by USGS, but was taken over by NPS in 2019.	NPS-SFNRC
Present	Funds Dependent	Southeast Florida around homestead Florida, exact location not known.	USFWS/FWC/UF
Present	Funds Dependent	Trapping and removal of tegus during their active season February-October.	NPS/USGS
Present	Funds Dependent	Radio tracking frequency varies depending on research focus.	USGS
Present	Funds Dependent		USGS
Present	Yes		FWC
Present	Yes		SFWMD

Present	Yes	SFWMD
		FDEP/DEAR
Present	Yes	Lake Condition index (LVI) per DEP SOP LVI 1000 and DEP SOP LVI 2000, in lakes. https://floridadep.gov/dear/bioassessment/content/bioassessm ent-methods#Lakes
Present	Maybe	Not directly related to CERP goals but is related to ERTF goals SFWMD
	Yes	NPS Biscayne National Park/UM
	Yes	NPS Biscayne National Park/UM
Present	Maybe	Relation to CERP and/or RECOVER - Not directly related to CERP goals but is related to ERTF goals: Not directly related to CERP goals but is related to ERTF goals
Present	Yes	SFWMD
		FWC, USACE, USGS

Present	Yes	Electrofisher samples have been approximately every 2 to 3 year depending on workload. Creel survey data is mostly historical occurring before the early 2000s, but it was recently conducted in 2022.	FWC
Present	Yes	The formal LTM sampling began in 2006. However, historical data was being collected at all three sites prior to the establishment of the LTM program.	FWC
2024	Funds Dependent	Not currently used as a RECOVER performance measure. Sampling occurs in April and October in the Ten Thousand Islands.	FWC
2024	Funds Dependent	Not currently used as a RECOVER performance measure. Sampling occurs in April and October in the Ten Thousand Islands.	FWC
2023	Yes	Marsh surveys (8 total) conducted in 1995, 1996, 1999, 2013, 2014 at 1000 different locations. Program excel file has over 100,000 cells. All of freshwater Everglades and Big Cypress. Next survey October-November 2023. Each location has about 130 field observations or analytical measurements for 6 media that do not easily fit in this table structure. https://www.epa.gov/everglades/environmental-monitoring- everglades	USEPA
present	Funds Dependent	Surveys are conducted across 40 sites within Everglades National Park	USGS
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. Acoustic telemetry, radio telemetry along SRS 4-6 in ENP These data are not publicly accessible because they could be used to target/exploit sensitive species. They are considered Type II data per the LTER Network Data Access Policy. Detailed metadata from a similar dataset can be found at https://doi.org/10.6073/pasta/8404e7eeccc4622c6175bfa8283 639f8	FIU

Present		See "FCE Sites" tab for map of FCE-LTER sites. Acoustic telemetry, radio telemetry along SRS 1-3 in ENP These data are not publicly accessible because they could be used to target/exploit sensitive species. They are considered Type II data per the LTER Network Data Access Policy. Detailed metadata from a similar dataset can be found at https://doi.org/10.6073/pasta/8404e7eeccc4622c6175bfa8283 639f8	FIU
Present	Funds Dependent		USACE
Present	Funds Dependent		USACE
			FDEP
		Vegetative habitat mapping and change. (Jill and Mike Barry)	FDEP

Present	Yes	Monitoring conducted in compliance with 2020 COP BO. Monitoring would continue to be required unless ESA consultation is re-initiated for the project.	USACE
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS 6, TS/Ph 7, 9-11 in ENP	FIU
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS 2-4, TS/Ph 2-3 in ENP SRS 3-4 data: https://doi.org/10.6073/pasta/f886e5c64a0836e489ac848074e bbe52	FIU

Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS 3-6, TS/Ph 3, 7, 9-11 in ENP Stable isotopes (C, N, S) of functional groups in large consumers data: https://doi.org/10.6073/pasta/e09a8f2b997f5e777255cbb890b b39fa	FIU
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS 2-3, TS/Ph 3 in ENP Stoichiometry, fatty acid data: https://doi.org/10.6073/pasta/70cdfca241ed9dffefdb7b3608d2 0ef1	FIU
Present	Maybe	Dependent on current occupancy estimates.	FWC
Present	Yes		FWC
2023	No	Will just monitor opportunistically moving forward.	FWC
2023	No	Will just monitor opportunistically moving forward.	FWC
Present	No		FWC
Present	Yes		FWC
Present	Yes		FWC
Present	Yes		FWC
2021	No		FWC
Present	Yes		FWC
Present	Yes		FWC
2013	Maybe		FWC

No		FWC
No		FWC
No		FWC
No		FWC
Yes		FWC
Yes		FWC
Yes		FWC
Maybe		FWC
yes		FWC
yes		FWC
yes		FWC
Maybe		FWC
Maybe		FWC
Yes		FWC
Maybe	Dependent on future staff resources and habitat quality.	FWC
Maybe	Dependent on future staff resources and habitat quality.	FWC
	NoNoNoYesYesYesYesYesYesYesMaybeyesyesYesMaybeMaybeMaybeMaybeMaybeMaybeMaybeMaybeMaybeMaybeMaybeMaybeMaybeMaybeMaybeMaybeMaybeMaybe	No

Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. Acoustic telemetry, radio telemetry along SRS 4-6 in ENP These data are not publicly accessible because they could be used to target/exploit sensitive species. They are considered Type II data per the LTER Network Data Access Policy. Detailed metadata from a similar dataset can be found at https://doi.org/10.6073/pasta/8404e7eeccc4622c6175bfa8283 639f8	FIU
Present	Yes	Monitoring conducted in compliance with 2020 COP BO. Monitoring would continue to be required unless ESA consultation is re-initiated for the project.	
Present	Yes	Relation to CERP and/or RECOVER: Assists assessing status of CSSS population status which may be affected by CERP projects	NPS-SFNRC
Present	Yes		NPS-SFNRC
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. Distributed network within and outside FCE domain	FIU
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. Distributed network within and outside FCE domain	FIU
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. Precipitation inputs: https://climatecenter.fsu.edu/products- services/data/precipitation/Miami	FIU
Present	Yes		FWC
Present	Yes		FWC

Present	Yes		FWC
Present	Yes		FWC
Present	Yes		FWC
Present	Yes	Current waterbody segments and analytes can be found on DEP Strategic Monitoring Program webpage. https://floridadep.gov/dear/watershed-assessment- section/content/strategic-monitoring-plans	FDEP/DEAR
Present	Yes	Current waterbody segments and analytes can be found on DEP Strategic Monitoring Program webpage. https://floridadep.gov/dear/watershed-assessment- section/content/strategic-monitoring-plans	FDEP/DEAR
Present	Yes	Current waterbody segments and analytes can be found on DEP Strategic Monitoring Program webpage. https://floridadep.gov/dear/watershed-assessment- section/content/strategic-monitoring-plans	FDEP/DEAR

Present	Yes	Monitoring conducted in compliance with 2020 COP BO and 2009 LORS BO. Monitoring would continue to be required unless ESA consultation is re-initiated for the project. Expected to continue under LOSOM.	USACE
Present	Yes	Monitoring conducted in compliance with 2009 LORS BO. Monitoring would continue to be required unless ESA consultation is re-initiated for the project. Expected to continue under LOSOM.	USACE
Present	Yes		FWC
present	Yes	fire perimeters are mapped for all prescribed fire and wildland fires within the Park that are above 10 acres in size. Smaller fires may have a perimeter mapped or point location recorded.	NPS-Fire
present	Yes	fire perimeters are mapped for all prescribed fire and wildland fires within the Park that are above 10 acres in size. Smaller fires may have a perimeter mapped or point location recorded.	NPS-Fire

present	Funds Dependent	Relation to CERP and/or RECOVER:	NPS-SFNRC
		 Track performance measures influenced by seasonal hydrological drivers; Integrates with CERP-MAP: Replaces the seasonally sampled "Sentinel Sites" of the CERP-MAP project in EVER and WCA3 that were dropped during budget cuts. This project supports understanding of the influence of seasonal dynamics on annual trends of CERP-MAP. Assess CERP and non-CERP restoration and hydrological management changes using BACI designs and an evaluation if restoration actions are providing anticipated benefits. Supports Everglades Ecosystem Status Reporting (e.g. CERP/RECOVER System Status Report and System-wide Indicators for Everglades Restoration Report) 	
	Funds Dependent	 This project precedes and was the basis for and integrates into the Fish Monitoring in WCA3 and EVER project. This portion of freshwater fish monitoring is historically sampled by EVER staff, however at the present time is integrated with FIU sampling. Relation to CERP and/or RECOVER: Track performance measures influenced by seasonal hydrological drivers; Integrates with CERP-MAP: Replaces the seasonally sampled "Sentinel Sites" of the CERP-MAP project in EVER and WCA3 that were dropped during budget cuts. This project supports understanding of the influence of seasonal dynamics on annual trends of CERP-MAP. Assess CERP and non-CERP restoration and hydrological management changes using BACI designs and an evaluation if restoration actions are providing anticipated benefits. Supports Everglades Ecosystem Status Reporting (e.g. CERP/RECOVER System Status Report and System-wide Indicators for Everglades Restoration Report) 	NPS-SFNRC

2024	Funds Dependent	The is a collaborative effort between EVER and Drs Sarah Janssen (USGS) and Brett Poulin (UCDavis) slated for a 1-3 year operational period to assess project objectives including identifying next steps for monitoring mercury dynamics and fish composition on spatial and temporal basis. Project is a next iteration following the work of Janssen et al. 2022 https://doi.org/10.1016/j.scitotenv.2022.156031 and is Relation to CERP and/or RECOVER: Assesses the downstream influence of changing flow distribution along the northern boundary of EVER as a result of COP combined with the influence of sea level rise in lower Shark River Slough.	
2023	No	The Florida bristle fern (Trichomanes punctatum ssp. floridanum) is federally endangered and currently known only from four rockland hammock preserves in Miami-Dade County and two hardwood forest hammocks in Sumter County. The range of this small, cryptic fern has been reduced by approximately 80 percent and is estimated to only cover about 60 square feet. A pilot reintroduction study will take place at the Charles Deering Estate Hammock, a site where the fern was historically recorded. Other proposed activities include microhabitat monitoring, genetic analyses, collections, and propagations. This project would significantly contribute to meeting actions in the Recovery Outline through monitoring known populations, collecting more information on microhabitat needs, monitoring unoccupied habitat for suitability as future reintroduction sites, determining best methods for propagation and reintroduction, and enhancing populations.	USFWS/Fairchild Botanical Garden
2021	Maybe	This is a collaborative project with the National Audubon Society.	FWC
Present	Funds Dependent		USGS
Present	Yes		FWC
Present	Yes		FWC

Present	Yes		FWC
Present	Yes		FWC
Present	Yes		FWC
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS 4-7, TS/Ph 6-8 in ENP SRS 4-7, TS/Ph 6-8 Mangrove site nutrient data: https://doi.org/10.6073/pasta/71579955fc6cb2b099879c15b58 3317a	FIU
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS 1-3, TS/Ph 1-7 in ENP [select marsh sites for velocity] Chekika velocity data: https://doi.org/10.6073/pasta/f0a076ef1cdb35abafab8b0b61fd e59f Gumbo Limbo Island velocity data: https://doi.org/10.6073/pasta/bdc327b2f493cfd4f51e3820fcbe 4a0c Mangrove sites salinity, temperature SRS 4-6; TS/Ph 7-8 data: https://doi.org/10.6073/pasta/285bc87dc9418e5f0579f72d1e0 Ob6d9 SRS 1-3 Salinity and Nutrients data: https://doi.org/10.6073/pasta/bfbf714b3ba522be424f0b56788 86a13	
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS 1-6, TS/Ph 1-3, 6-7, 9-11 in ENP Litter decomposition rate data: https://doi.org/10.6073/pasta/913c2e48833bd96849a4a7eb5f0 571a8	FIU

present	Funds Dependent	Continue supporting field operations at 3 flux stations in Lake Okeechobee and BCNP	USGS
2019	No	Switched to black rail surveys.	FWC
2016	No	Switched to black rail surveys.	FWC
2022	No	Current white-tailed deer study will provide presence data for mega-fauna and other wildlife.	FWC
2023	Yes	Marsh surveys (8 total) conducted in 1995, 1996, 1999, 2013, 2014 at 1000 different locations. Program excel file has over 100,000 cells. All of freshwater Everglades and Big Cypress. Next survey October-November 2023. Each location has about 130 field observations or analytical measurements for 6 media that do not easily fit in this table structure. https://www.epa.gov/everglades/environmental-monitoring- everglades	USEPA
Present	Funds Dependent		FIU

Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS 1-6, TS/Ph 1-3, 6-7, 9-11 in ENP Bulk soil prokaryotic microbiome data: https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA804243 Bulk soil fungal microbiome data: https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA804246 Soil microbiome at different depths data: https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA804228 Phylogenetic profiling of aquatic microbial communities data: https://www.ncbi.nlm.nih.gov/bioproject/PRJNA525456	FIU
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS 2 (2009-P), SRS-6 (2004-P), TS/Ph-1 (2009-P), TS/Ph-7 (2017- P), TS/Ph-10 (2019-P) in ENP Eddy Covariance Tower data (SRS 2, SRS 6, TS/Ph 1b, TS/Ph 7 & TS/Ph 10): https://doi.org/10.6073/pasta/417f2954c3cd043e73004e89aff8 3b5e	
Present	Yes		FWC
Present	Yes		FWC
Present	Yes	Current waterbody segments and analytes can be found on DEP Strategic Monitoring Program webpage. https://floridadep.gov/dear/watershed-assessment- section/content/strategic-monitoring-plans	FDEP/DEAR

Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS 1-6, TS/Ph 1-3, 6-7, 9-11 in ENP Fluorescence data: https://doi.org/10.6073/pasta/3938d3bb664d57584afc749c6a7 68f31	FIU
		https://doi.org/10.6073/pasta/d1abed5732fe4f4b086e092fb85 bf431	
present	Funds Dependent	Sampling is conducted within the WCA region of the Greater Everglades. Sampling is planned for Shark River in upcoming years	USGS
Present	Yes	Lake Condition index (LVI) per DEP SOP LVI 1000 and DEP SOP LVI 2000, in lakes. https://floridadep.gov/dear/bioassessment/content/bioassessm ent-methods#Lakes	FDEP/DEAR
present	Funds Dependent	Although integrated into one agreement, the aquatic fauna and the periphyton nutrient projects would be viable as individual separate monitoring projects with independent benefits/value. Relation to CERP and/or RECOVER: Relates to hydrological management project influence along the eastern boundary of EVER.	NPS-SFNRC
Present	Yes	Current waterbody segments and analytes can be found on DEP Strategic Monitoring Program webpage. https://floridadep.gov/dear/watershed-assessment- section/content/strategic-monitoring-plans	FDEP/DEAR

2019	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS 1-6, TS/Ph 1-3, 6-7, 9-11 in ENP Plankton pigment concentration data: https://doi.org/10.6073/pasta/49adea692415666d289eac906b e41b57	FIU
2018	Maybe		FWC
2021	Maybe		FWC
2022	Maybe		FWC
Present	Yes		FWC
2022	Maybe		FWC
Present	Yes		FWC
2022	Maybe		FWC
2018	Yes		FWC

Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites.	FIU
		SRS 1-6, TS/Ph 1-3, 6-7, 9-11 in ENP	
		TS/Ph 7-11 Physical data:	
		https://doi.org/10.6073/pasta/1b688d21d16bedea573c45be56	
		8e4ba7	
		SRS Grab Samples data:	
		https://doi.org/10.6073/pasta/4c6a5c2382bf376c8872560fc32	
		be14e	
		TS Grab Samples data:	
		https://doi.org/10.6073/pasta/08e1dc1ccee9901ae57e404f031	
		9b789	
		https://doi.org/10.6073/pasta/29ee3caca5def4c4a69a4612fa7e	
		90fa	
		TS Extensive data:	
		https://doi.org/10.6073/pasta/344a61ef6aff48148cad361878f6	
		adfb	
		SRS extensive data:	
		https://doi.org/10.6073/pasta/91b8b1f55986af8a3ee20f19576	
		e7b42	
		TS and Florida Bay Extensive data:	
		https://doi.org/10.6073/pasta/49adea692415666d289eac906b	
		e41b57	
Present	Yes	FWC coordinates the collection of nesting data through a	USFWS/FWC
		network of permit holders consisting of federal, state, and local	
		park personnel; other government agency personnel; members	
		of conservation organizations, university researchers; and	
		private citizens. Florida staff members coordinate data	
		collection, provide training, and compile annual survey data for	
		publications and data recession.	
Present	Yes	FWC coordinates the collection of nesting data through a	USFWS/FWC
		network of permit holders consisting of federal, state, and local	
		park personnel; other government agency personnel; members	
		of conservation organizations, university researchers; and	
		private citizens. Florida staff members coordinate data	
		collection, provide training, and compile annual survey data for	
		publications and data recession.	

2023	Maybe		FWC
Present	Funds Dependent		SFWMD
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS 1-6, TS/Ph 1-3, 6-7, 9-11 in ENP Mangrove sites salinity data (SRS 4-6;TS/Ph 7-8): https://doi.org/10.6073/pasta/285bc87dc9418e5f0579f72d1e0 Ob6d9 SRS 1-3 salinity and nutrient data: https://doi.org/10.6073/pasta/bfbf714b3ba522be424f0b56788 86a13 Mangrove site nutrient data (SRS 4-7, TS/Ph 6-8): https://doi.org/10.6073/pasta/71579955fc6cb2b099879c15b58 3317a	
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS 1-6, TS/Ph 1-3, 6-7, 9-11 in ENP Soil Nutrient data (All FCE Sites): https://doi.org/10.6073/pasta/8660289b8c1e9f2ca01ee503f0d 9ecda	FIU
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. marsh sites (2020-P) and mangrove sites (1999-P) in ENP Soil elevation change data (TS/Ph 6-7): https://doi.org/10.6073/pasta/1755e84862607d90e33bcefe6ce 997e2 https://doi.org/10.6073/pasta/0edc80f91191e66eea6b4b0ebd4 07a0d Soil elevation change data (SRS 4 & 6:): https://www.sciencebase.gov/catalog/item/58f65df4e4b0bd52 222f7818	
Present	Yes		NPS SFCN
Present	Yes		NPS SFCN

2023	Yes	Marsh surveys (8 total) conducted in 1995, 1996, 1999, 2013, 2014 at 1000 different locations. Program excel file has over 100,000 cells. All of freshwater Everglades and Big Cypress. Next survey October-November 2023. Each location has about 130 field observations or analytical measurements for 6 media that do not easily fit in this table structure. https://www.epa.gov/everglades/environmental-monitoring- everglades	USEPA
Present	Yes	Lake Condition index (LVI) per DEP SOP LVI 1000 and DEP SOP LVI 2000, in lakes. https://floridadep.gov/dear/bioassessment/content/bioassessm ent-methods#Lakes	FDEP/DEAR
Present	Yes	Lake Condition index (LVI) per DEP SOP LVI 1000 and DEP SOP LVI 2000, in lakes. https://floridadep.gov/dear/bioassessment/content/bioassessm ent-methods#Lakes	FDEP/DEAR
Present	Funds Dependent		USFWS

Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites.	FIU
		SRS 1-6, TS/Ph 1-3, 6-7, 9-11 in ENP	
		TS/Ph 7-11 Physical data:	
		https://doi.org/10.6073/pasta/1b688d21d16bedea573c45be56	
		8e4ba7	
		SRS Grab Samples data:	
		https://doi.org/10.6073/pasta/4c6a5c2382bf376c8872560fc32	
		be14e	
		TS Grab Samples data:	
		https://doi.org/10.6073/pasta/08e1dc1ccee9901ae57e404f031 9b789	
		https://doi.org/10.6073/pasta/29ee3caca5def4c4a69a4612fa7e	
		90fa	
		TS Extensive data:	
		https://doi.org/10.6073/pasta/344a61ef6aff48148cad361878f6	
		adfb	
		SRS extensive data:	
		https://doi.org/10.6073/pasta/91b8b1f55986af8a3ee20f19576	
		e7b42	
		TS and Florida Bay Extensive data:	
		https://doi.org/10.6073/pasta/49adea692415666d289eac906b	
		e41b57	
2022	No		FWC
Present	Yes		FWC
Present	Yes		FWC
Present	Yes	Current waterbody segments and analytes can be found on DEP	FDEP/DEAR
		Strategic Monitoring Program webpage.	
		https://floridadep.gov/dear/watershed-assessment-	
		section/content/strategic-monitoring-plans	

Present	Yes		FWC
Present	Yes		SFWMD
Present	Yes		SFWMD
Present	Yes		SFWMD
Present	Yes		FWC
Present	Yes		FWC
2023	No		FWC
Present	Maybe	Continuation of study will depend on results and validation of protocol.	FWC
Present	Yes		FWC

Present	Yes		FWC
Present	Yes		FWC
Present	Yes	Monitoring conducted in compliance with 2020 COP BO. Monitoring would continue to be required unless ESA consultation is re-initiated for the project.	USACE
2023	Yes	Marsh surveys (8 total) conducted in 1995, 1996, 1999, 2013, 2014 at 1000 different locations. Program excel file has over 100,000 cells. All of freshwater Everglades and Big Cypress. Next survey October-November 2023. Each location has about 130 field observations or analytical measurements for 6 media that do not easily fit in this table structure. https://www.epa.gov/everglades/environmental-monitoring- everglades	USEPA
		We conduct monthly nutrient grab samples at our SWMP Sites and a 24-Hr DIEL sample at our dock at Shell Island Road. We have these analyzed for dissolved inorganic nitrogen, phosphorous, and chlorophyll a. See "SWMP Stations" tab for map.	FDEP
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS1, SRS2, SRS3, TS/Ph1b,TS/Ph2,TS/Ph3, TS/Ph4, TS/Ph5, TS/Ph9, TS/Ph10, and TS/Ph11 in ENP Data: https://doi.org/10.6073/pasta/b3debdca5457a909a4b5087579 596073	FIU

Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS1, SRS2, SRS3, SRS1c, SRS1d, TS/Ph2, TS/Ph3, TS/Ph1b in ENP Data: https://doi.org/10.6073/pasta/b9c86dfafc9578cbfe199cf0a6d3 99e2	FIU
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS 1-3, TS/Ph 1-3, 9-11 in ENP Periphyton Biomass Accumulation data: https://doi.org/10.6073/pasta/b9c86dfafc9578cbfe199cf0a6d3 99e2 Periphyton productivity data: https://doi.org/10.6073/pasta/f2fe7c89644d4fa89b9d37d12c33 031b Periphyton Accumulation Rate data: https://doi.org/10.6073/pasta/b3debdca5457a909a4b5087579 596073	FIU
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS1, SRS2, SRS3, TS/Ph2, TS/Ph3,TS/Ph1b in ENP Data: https://doi.org/10.6073/pasta/f2fe7c89644d4fa89b9d37d12c33 031b	FIU
present	Yes		NPS-SFNRC

present	Yes	This monitoring receives funding from the C-111 Restoration Initiative	SFWMD
Present	Yes		NPS SFCN
2025	Maybe	A Task Order that includes this ecological monitoring is through the contracting process at this moment. Award is expected during this FY23 Q3. This monitoring is an interim monitoring, unless otherwise agreed to with the Monitoring Assessment Group (MAG).	USACE
Present	Yes	Phytoplankton is collected in lakes that are verified as impaired for nutrients and or Chlorophyll-a Corrected. The results will be used for data models used for TMDL development.	FDEP/DEAR
			FDEP
		No known sightings.	FDEP

Present	Yes	Current waterbody segments and analytes can be found on DEP Strategic Monitoring Program webpage. https://floridadep.gov/dear/watershed-assessment- section/content/strategic-monitoring-plans	FDEP/DEAR
Present	Yes	Lake Condition index (LVI) per DEP SOP LVI 1000 and DEP SOP LVI 2000, in lakes. https://floridadep.gov/dear/bioassessment/content/bioassessm ent-methods#Lakes	FDEP/DEAR
			FDEP/DEAR
Present	Yes		SFWMD
		No active monitoring specifically for this.	
		Very basic pH, organic matter, etc. in relation to plant studies.	FDEP

Present	Funds Dependent		USACE
present	Yes		SFWMD
Present		Monitoring would continue to be required unless ESA consultation is re-initiated for the project.	USACE
Present	Yes		FWC
Present	Yes		FWC
Present	Yes		FWC

2025	Maybe	A Task Order that includes this ecological monitoring is through the contracting process at this moment. Award is expected during this FY23 Q3. This monitoring is an interim monitoring, unless otherwise agreed to with the Monitoring Assessment Group (MAG).	USACE
2023	Yes	Marsh surveys (8 total) conducted in 1995, 1996, 1999, 2013, 2014 at 1000 different locations. Program excel file has over 100,000 cells. All of freshwater Everglades and Big Cypress. Next survey October-November 2023. Each location has about 130 field observations or analytical measurements for 6 media that do not easily fit in this table structure. https://www.epa.gov/everglades/environmental-monitoring- everglades	USEPA
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS1, SRS2, SRS3, TS/Ph1b, TS/Ph2, TS/Ph4, TS/Ph5, and TS/Ph6b in ENP SRS sawgrass TP data: https://doi.org/10.6073/pasta/d7758e39f342d5d1876c2bb151 2992bd SRS sawgrass TC and TN data: https://doi.org/10.6073/pasta/22a6080ef350e24b8fc6c0e17b1 054fc TS/Ph sawgrass TP data: https://doi.org/10.6073/pasta/efe73edf89298dbdf92af812e7f0 070e TS/Ph sawgrass TC and TN data: https://doi.org/10.6073/pasta/53e28bcee44aeda5c0dc960c862 36b56	
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS 4, SRS 5, SRS 6, and TS/Ph 8 in ENP Data: https://doi.org/10.6073/pasta/25a403f500aa209327c5f13371b ef6ef	FIU

Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites.	FIU
		SRS 4, SRS 5, SRS 6, and TS/Ph 8 in ENP	
		Data:	
		https://doi.org/10.6073/pasta/95ea6a96d0ffd39339eb363cbc8	3
		58260	
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites.	FIU
		SRS1, SRS2, SRS3, TS/Ph1b,TS/Ph2,TS/Ph3,TS/Ph6b in ENP	
		Shark River Slough data:	
		https://doi.org/10.6073/pasta/29a1dafbccef39ca0aed12191b3	0
		ae73	
		Taylor Slough data:	
		https://doi.org/10.6073/pasta/0d36bd9d8d5ab6df4a43df2794	2
		dcf68	
Present	Yes	Lake Condition index (LVI) per DEP SOP LVI 1000 and DEP SOP	FDEP/DEAR
		LVI 2000, in lakes.	
		https://floridadep.gov/dear/bioassessment/content/bioassess	n
		ent-methods#Lakes	
			FDEP/DEAR
	E de De la de		
Present	Funds Dependent	Each of the 6 transects is sampled once every 4 years	USACE

Present	Funds Dependent	USACE
Present	Yes	NPS SFCN
Present	Yes	NPS SFCN

2023	Funds Dependent	Relation to CERP and/or RECOVER: Evaluates Change in vegetation in NESRS, Upper Taylor Slough, and Turner River which will be affected by CERP projects	NPS-SFNRC
Present	Yes	Relation to CERP and/or RECOVER: Marl Prairie vegetation is a greater everglades indicator	NPS-SFNRC
2023	Maybe		SFWMD
Present	Yes		FWC
Present	Yes		FWC
2018	Maybe	if nesting colonies are found opportunistically, staff will conduct ground surveys.	FWC
2018	Maybe	if nesting colonies are found opportunistically, staff will conduct ground surveys.	FWC
2018	Maybe	if nesting colonies are found opportunistically, staff will conduct ground surveys.	FWC
2018	Maybe	if nesting colonies are found opportunistically, staff will conduct ground surveys.	FWC
Present	Yes		FWC
Present	Yes		FWC

Present	Funds Dependent		USACE
Present	Yes	Multiple agencies are conducting surveys throughout the	NPS-SFNRC
		Greater Everglades, including NPS.	
Present	Yes		SFWMD
Present		This monitoring became necessary to understand dramatic	SFWMD
		changes in wading bird nesting behavior and locations after	
		extreme weather events such as Hurricane Irma and restoration	
		progress allow for greater freshwater flows to the southern	
		coastal system and Florida Bay. It replaces the RECOVER funded	
		Systematic Reconnaissance Flights that were cancelled in 2010.	

2023	Yes	Col conducts regular wading bird surveys, but indicated species (white ibis, wood stork, roseate spoonbill) do not often occur in those areas. Curcie Lake and Rookery Bay CWA are areas where we regularly monitor white ibis. Marsh surveys (8 total) conducted in 1995, 1996, 1999, 2013,	FDEP
		2014 at 1000 different locations. Program excel file has over 100,000 cells. All of freshwater Everglades and Big Cypress. Next survey October-November 2023. Each location has about 130 field observations or analytical measurements for 6 media that do not easily fit in this table structure. https://www.epa.gov/everglades/environmental-monitoring- everglades	
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS 1-6, TS/Ph 1-7 in ENP SRS 1-6 data: https://doi.org/10.6073/pasta/472cfad9e0de0c8a7e4aad4eae8 4b8bc SRS 4-6 and TS/Ph 6-8 data: https://doi.org/10.6073/pasta/590267a4b46755c34b230d35b6 Od1004 TS/Ph 1,2,3,8 data: https://doi.org/10.6073/pasta/d15f229207c2f8505f0be52c415 bd7e7	FIU
			FDEP/DEAR
Present	Yes	Current waterbody segments and analytes can be found on DEP Strategic Monitoring Program webpage. https://floridadep.gov/dear/watershed-assessment- section/content/strategic-monitoring-plans	FDEP/DEAR
	Yes	Relation to CERP and/or RECOVER: Real Time estimates of water depth within park to assist operations and assessing affects of CERP and other projects	NPS-SFNRC

Present	Funds Dependent	Surveys are conducted across 40 sites within Everglades National Park and a salinity transect within the Shark River	USGS
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. TS/Ph9,TS/Ph10, TS/Ph11, Joe Bay-WQM Station 10, Little Madeira Bay-WQM Station 11, Tarpon Bay-WQM Station 38, Gunboat Island-WQM Station 39, Ponce De Leon Bay-WQM Station 40, and Oyster Bay-WQM Station 41 in ENP Data: https://doi.org/10.6073/pasta/49adea692415666d289eac906b e41b57	FIU
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS 1-6 and TS/Ph 1-7 in ENP SRS data (monthly grab samples): https://doi.org/10.6073/pasta/4c6a5c2382bf376c8872560fc32 be14e SRS data (autosampler): https://doi.org/10.6073/pasta/91b8b1f55986af8a3ee20f19576 e7b42 TS/Ph data (monthly grab samples): https://doi.org/10.6073/pasta/08e1dc1ccee9901ae57e404f031 9b789 and https://doi.org/10.6073/pasta/29ee3caca5def4c4a69a4612fa7e 90fa TS/Ph data (autosampler): https://doi.org/10.6073/pasta/bf0caa75c37ed0abebfbe950ea4 3ed13 and https://doi.org/10.6073/pasta/344a61ef6aff48148cad361878f6 adfb	
Present	Funds Dependent	See "FCE Sites" tab for map of FCE-LTER sites. SRS 1-6, TS/Ph 1-3, 6-7, 9-11 in ENP Fluorescence data: https://doi.org/10.6073/pasta/3938d3bb664d57584afc749c6a7 68f31 https://doi.org/10.6073/pasta/d1abed5732fe4f4b086e092fb85 bf431	FIU

			FDEP/DEAR
			FDEP/DEAR
Present	Yes	Current waterbody segments and analytes can be found on DEP Strategic Monitoring Program webpage. https://floridadep.gov/dear/watershed-assessment- section/content/strategic-monitoring-plans	FDEP/DEAR
			FDEP/DEAR
			FDEP/DEAR
			FDEP/DEAR

Present		Relation to CERP and/or RECOVER: Assesses the downstream influence of changing flows along the northern boundary of EVER as a result of COP in North East Shark River Slough.	NPS-SFNRC
present	Yes		NPS-SFNRC

2024	Funds Dependent	Doing episodic monitoring for project and using the establish SCCF RECON monitoring network	USEPA
2024	Funds Dependent	Doing episodic monitoring for project and using the establish SCCF RECON monitoring network	USEPA
2024	Funds Dependent	Doing episodic monitoring for project and using the establish SCCF RECON monitoring network	USEPA
2024	Funds Dependent	Doing episodic monitoring for project and using the establish SCCF RECON monitoring network	USEPA

2024	Funds Dependent	Doing episodic monitoring for project and using the establish SCCF RECON monitoring network	USEPA
2024	Funds Dependent	Doing episodic monitoring for project and using the establish SCCF RECON monitoring network	USEPA
2024	Funds Dependent	Doing episodic monitoring for project and using the establish SCCF RECON monitoring network	USEPA
2024	Funds Dependent	Doing episodic monitoring for project and using the establish SCCF RECON monitoring network	USEPA

2024	Funds Dependent	Doing episodic monitoring for project and using the establish SCCF RECON monitoring network	USEPA
2024	Funds Dependent	Doing episodic monitoring for project and using the establish SCCF RECON monitoring network	USEPA
2024	Funds Dependent	Doing episodic monitoring for project and using the establish SCCF RECON monitoring network	USEPA
2024	Funds Dependent	Doing episodic monitoring for project and using the establish SCCF RECON monitoring network	USEPA

2024	Funds Dependent	Doing episodic monitoring for project and using the establish SCCF RECON monitoring network	USEPA
2024	Funds Dependent	Doing episodic monitoring for project and using the establish SCCF RECON monitoring network	USEPA
Present	Yes		FWC
Present	Funds Dependent		USGS
Present	Funds Dependent		USACE

Tribe/Agency Point of Contact	Monitoring Point of Contact
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com

Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com
Brooke Talley,	Vincent Deem,
brooke.talley@myfwc.com	vincent.deem@myfwc.com

John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
Gina Ralph,	Tasso Cocoves,
gina.p.ralph@usace.army.mil	Tasso.C.Cocoves@usace.army.mil
Lori Oberhofer, lori_oberhofer@nps.gov	Mark Parry, mark_parry@nps.gov
Deborah Epperson, depperson@usgs.gov	Mike Cherkiss, mcherkiss@usgs.gov
McKayla Spencer,	McKayla Spencer,
mckayla.spencer@myfwc.com	mckayla.spencer@myfwc.com
Melissa Miller, melissamiller@ufl.edu	Melissa Miller, melissamiller@ufl.edu
Sarah Janssen, sjanssen@usgs.gov	Sarah Janssen, sjanssen@usgs.gov
Kim Dibble, Kimberly_Dibble@nps.gov	Kevin Whelan,
	Kevin_Whelan@nps.gov

Vanessa McDonough,
hanassa medanayah@nns.gov
vanessa_mcdonough@nps.gov
Kevin Donmoyer,
kevin_donmoyer@nps.gov
Dr. Frank Mazzotti, fjma@ufl.edu
Kavin Danmayor
Kevin Donmoyer,
kevin_donmoyer@nps.gov
Amy Yackel Adams, yackela@usgs.gov
Kristen Hart, kristen_hart@usgs.gov
Eric Suarez, eric.suarez@myfwc.com
LeRoy Rodgers, Irodgers@sfwmd.gov

LeRoy Rodgers, Irodgers@sfwmd.gov	LeRoy Rodgers, Irodgers@sfwmd.gov
Kenneth Weaver,	Alicia Hogue,
kenneth.weaver@floridadep.gov	Alicia.Hogue@FloridaDEP.gov
Kenneth Weaver,	Curtis Musson,
kenneth.weaver@floridadep.gov	Curtis.musson@FloridaDEP.gov
LeRoy Rodgers, Irodgers@sfwmd.gov	LeRoy Rodgers, Irodgers@sfwmd.gov
Morgan Elmer,	Shelby_Moneysmith,
morgan_elmer@nps.gov	shelby_moneysmith@nps.gov
Morgan Elmer,	Shelby_Moneysmith,
morgan_elmer@nps.gov	shelby_moneysmith@nps.gov
LeRoy Rodgers, Irodgers@sfwmd.gov	LeRoy Rodgers, Irodgers@sfwmd.gov
Lawrence Glenn, lglenn@sfwmd.gov	Michael Manna, mmanna@sfwmd.gov
Gil McRae, Gil.McRae@MyFWC.com	Nick Trippel, Nick.Trippel@MyFWC.com

Josh Wilsey, josh.wilsey@Myfwc.com	
	,
Gil McRae, Gil.McRae@MyFWC.com	Dan Nelson,
	Dan.Nelson@MyFWC.com
Gil McRae, Gil.McRae@MyFWC.com	Meagan Schrandt,
	Meagan.Schrandt@MyFWC.com
Gil McRae, Gil.McRae@MyFWC.com	Meagan Schrandt,
	Meagan.Schrandt@MyFWC.com
	Weagan.schrandt@Wyr Wc.com
Dan Sahaidt, sahaidt dan Qana gau	Dan Sahaidt, sahaidt dan Qana say
Dan Scheidt, scheidt.dan@epa.gov	Dan Scheidt, scheidt.dan@epa.gov
Sarah Janssen, sjanssen@usgs.gov	Sarah Janssen, sjanssen@usgs.gov
John Kominoski, jkominos@fiu.edu	Cabriel Komanar, skamanar Ofiu adu
John Kommoski, jkommos@hu.edu	Gabriel Kamener, gkamener@fiu.edu

John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
Gina Ralph,	Tasso Cocoves,
gina.p.ralph@usace.army.mil	Tasso.C.Cocoves@usace.army.mil
Gina Ralph,	Tasso Cocoves,
gina.p.ralph@usace.army.mil	Tasso.C.Cocoves@usace.army.mil
	Jared Franklin,
	Jared.Franklin@dep.state.fl.us
	Jared Franklin,
	Jared.Franklin@dep.state.fl.us

Melissa Nasuti,	Melissa Nasuti,
melissa.a.nasuti@usace.army.mil	melissa.a.nasuti@usace.army.mil
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu

John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Mark Cook, mcook@sfwmd.gov	Mark Cook, mcook@sfwmd.gov
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	

Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	, , ,
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	

John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
Melissa Nasuti,	Melissa Nasuti,
melissa.a.nasuti@usace.army.mil	melissa.a.nasuti@usace.army.mil
Tylan Dean, Tylan_Dean@nps.gov	Virzi,
Lori Oberhofer,	Lori Oberhofer,
lori_oberhofer@nps.gov	lori_oberhofer@nps.gov
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	, , , , , , , , , , , , , , , , , , , ,
Marsha Ward, marsha.ward@myfwc.com	Eric Suarez, eric.suarez@myfwc.com

NA	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Kenneth Weaver,	Curtis Musson,
kenneth.weaver@floridadep.gov	Curtis.musson@FloridaDEP.gov
Kenneth Weaver,	Curtis Musson,
kenneth.weaver@floridadep.gov	Curtis.musson@FloridaDEP.gov
Kenneth Weaver,	Curtis Musson,
kenneth.weaver@floridadep.gov	Curtis.musson@FloridaDEP.gov

Melissa Nasuti,	Melissa Nasuti,
melissa.a.nasuti@usace.army.mil	melissa.a.nasuti@usace.army.mil
Melissa Nasuti,	Melissa Nasuti,
melissa.a.nasuti@usace.army.mil	melissa.a.nasuti@usace.army.mil
Tyler Beck, tyler.beck@myfwc.com	Tyler Beck, tyler.beck@myfwc.com
Tyler beck, tyler.beck@myrwc.com	Tyler beck, tyler.beck@myrwc.com
Maya Tupaj, mayavati_tupaj@nps.gov	Maya Tupaj, mayavati_tupaj@nps.gov
Maya Tupaj, mayavati_tupaj@nps.gov	Maya Tunai mayayati tunai@nns.gov
inaya Tupaj, mayavati_tupaj@mps.gov	Maya Tupaj, mayavati_tupaj@nps.gov

Jeff Kline, Jeff_Kline@nps.gov	Dr. Nathan Dorn, ndorn@fiu.edu
Jeff Kline, Jeff_Kline@nps.gov	Dr. Nathan Dorn, ndorn@fiu.edu
Jen kine, Jen_kine@hps.gov	Dr. Nathan Dom, huom@nu.euu

Jeff Kline, Jeff_Kline@nps.gov	Jeff Kline and Dr. Sarah Janssen (USGS), jeff_kline@nps.gov
Heather Hitt, heather_hitt@fws.gov	Jennifer Possley, jpossley@fairchildgarden.org
Marsha Ward, marsha.ward@myfwc.com	Eric Suarez, eric.suarez@myfwc.com
Eduardo Patino, epatino@usgs.gov	Eric Carlson, ecarlson@usgs.gov
Marsha Ward, marsha.ward@myfwc.com	Eric Suarez, eric.suarez@myfwc.com
Marsha Ward, marsha.ward@myfwc.com	Eric Suarez, eric.suarez@myfwc.com

Marsha Ward, marsha.ward@myfwc.com	Eric Suarez, eric.suarez@myfwc.com
Marsha Ward, marsha.ward@myfwc.com	Eric Suarez, eric.suarez@myfwc.com
Marsha Ward, marsha.ward@myfwc.com	Eric Suarez, eric.suarez@myfwc.com
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu

Deborah Epperson,	Andre Daniels,
depperson@usgs.gov	andre_daniels@usgs.gov
Marsha Ward, marsha.ward@myfwc.com	Eric Suarez, eric.suarez@myfwc.com
Marsha Ward, marsha.ward@myfwc.com	Eric Suarez, eric.suarez@myfwc.com
Marsha Ward, marsha.ward@myfwc.com	Eric Suarez, eric.suarez@myfwc.com
Dan Scheidt, scheidt.dan@epa.gov	Dan Scheidt, scheidt.dan@epa.gov
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu

John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com Marsha Ward, marsha.ward@myfwc.com	Eric Suarez, eric.suarez@myfwc.com
Kenneth Weaver, kenneth.weaver@floridadep.gov	Curtis Musson, Curtis.musson@FloridaDEP.gov

John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
Sarah Janssen, sjanssen@usgs.gov	Sarah Janssen, sjanssen@usgs.gov
Kenneth Weaver,	Curtis Musson,
kenneth.weaver@floridadep.gov	Curtis.musson@FloridaDEP.gov
Jeff Kline, Jeff_Kline@nps.gov	Dr. Evelyn Gaiser, gaisere@fiu.edu
Kenneth Weaver,	Curtis Musson,
kenneth.weaver@floridadep.gov	Curtis.musson@FloridaDEP.gov

John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
Marsha Ward, marsha.ward@myfwc.com	Eric Suarez, eric.suarez@myfwc.com

John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
Karen Frutchey,	Karen Frutchey,
karen_frutchey@fws.gov	karen_frutchey@fws.gov
Karen Frutchey,	Karen Frutchey,
karen_frutchey@fws.gov	karen_frutchey@fws.gov

Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
	Enc suarez, enc.suarez@myrwc.com
marsha.ward@myfwc.com	
Lawrence Glenn, lglenn@sfwmd.gov	Zach Welch, zwelch@sfwmd.gov
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
Morgan Elmer,	Kevin Whelan,
morgan_elmer@nps.gov	Kevin_Whelan@nps.gov
Morgan Elmer,	Kevin Whelan,
morgan_elmer@nps.gov	Kevin_Whelan@nps.gov

Dan Scheidt, scheidt.dan@epa.gov	Dan Scheidt, scheidt.dan@epa.gov
Kenneth Weaver,	Curtis Musson,
kenneth.weaver@floridadep.gov	Curtis.musson@FloridaDEP.gov
Kenneth Weaver,	Curtis Musson,
kenneth.weaver@floridadep.gov	Curtis.musson@FloridaDEP.gov
Jeremy Conrad,	Jeremy Conrad,
Jeremy_Conrad@fws.gov	Jeremy_Conrad@fws.gov

Labor Kanain aski ile state Offers I	
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Kenneth Weaver,	Curtis Musson,
kenneth.weaver@floridadep.gov	Curtis.musson@FloridaDEP.gov

Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Lawrence Glenn, lglenn@sfwmd.gov	Sue Newman, snewman@sfwmd.gov
Lawrence Glenn, lglenn@sfwmd.gov	Mark Cook, mcook@sfwmd.gov
Lawrence Glenn, lglenn@sfwmd.gov	Colin Saunders, csaunder@sfwmd.gov
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
- ,	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
- ·	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	

Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	, <u> </u>
Melissa Nasuti,	Melissa Nasuti,
melissa.a.nasuti@usace.army.mil	melissa.a.nasuti@usace.army.mil
Dan Scheidt, scheidt.dan@epa.gov	Dan Scheidt, scheidt.dan@epa.gov
	Julie Drevenkar,
	Julie.Drevenkar@dep.state.fl.us
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu

John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
Donatto Surratt, donatto_surratt@nps.gov	Tiffany Troxler, troxlert@fiu.edu

Lawrence Glenn, lglenn@sfwmd.gov	Fred Sklar, fsklar@sfwmd.gov
Kim Dibble, Kimberly_Dibble@nps.gov	Kevin Whelan, Kevin_Whelan@nps.gov
James K. Bradshaw, James.K.Bradshaw@usace.army.mil	Fernando Perez, fernando.pereztorres@usace.army.mil
Kenneth Weaver, kenneth.weaver@floridadep.gov	Curtis Musson, Curtis.musson@FloridaDEP.gov
	Jared Franklin, Jared.Franklin@dep.state.fl.us

Kenneth Weaver,	Curtis Musson,
kenneth.weaver@floridadep.gov	Curtis.musson@FloridaDEP.gov
Kenneth Weaver,	Curtis Musson,
kenneth.weaver@floridadep.gov	Curtis.musson@FloridaDEP.gov
Kenneth Weaver,	Alicia Hogue,
kenneth.weaver@floridadep.gov	Alicia.Hogue@FloridaDEP.gov
Lawrence Glenn, lglenn@sfwmd.gov	Jake Dombrowski,
	jdombrow@sfwmd.gov
	Jared Franklin,
	Jared.Franklin@dep.state.fl.us

Gina Ralph,	Tasso Cocoves,
gina.p.ralph@usace.army.mil	Tasso.C.Cocoves@usace.army.mil
Lawrence Glenn, lglenn@sfwmd.gov	Carlos Coronado, ccoron@sfwmd.gov
Melissa Nasuti,	Melissa Nasuti,
melissa.a.nasuti@usace.army.mil	melissa.a.nasuti@usace.army.mil
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	

James K. Bradshaw,	Fernando Perez,
James.K.Bradshaw@usace.army.mil	fernando.pereztorres@usace.army.mil
Dan Scheidt, scheidt.dan@epa.gov	Dan Scheidt, scheidt.dan@epa.gov
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu

John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
Kenneth Weaver,	Curtis Musson,
kenneth.weaver@floridadep.gov	Curtis.musson@FloridaDEP.gov
Kenneth Weaver,	Alicia Hogue,
kenneth.weaver@floridadep.gov	Alicia.Hogue@FloridaDEP.gov
Gina Ralph,	Tasso Cocoves,
gina.p.ralph@usace.army.mil	Tasso.C.Cocoves@usace.army.mil

Gina Ralph,	Tasso Cocoves,
gina.p.ralph@usace.army.mil	Tasso.C.Cocoves@usace.army.mil
Kim Dibble, Kimberly_Dibble@nps.gov	Kevin Whelan, Kevin_Whelan@nps.gov
Kim Dibble, Kimberly_Dibble@nps.gov	Kevin Whelan, Kevin_Whelan@nps.gov

Andrea Atkinson, Andrea_Atkinson@nps.gov	Danial Gann, GannD@fiu.edu
Tylan Dean, Tylan_Dean@nps.gov	Jay Sah, sahj@fiu.edu
Lawrence Glenn, lglenn@sfwmd.gov	Christa Zweig, czweig@sfwmd.gov
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Mark Cook, mcook@sfwmd.gov	Mark Cook, mcook@sfwmd.gov
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	
Marsha Ward,	Eric Suarez, eric.suarez@myfwc.com
marsha.ward@myfwc.com	

Gina Ralph,	Tasso Cocoves,
gina.p.ralph@usace.army.mil	Tasso.C.Cocoves@usace.army.mil
Lori Oberhofer,	Lori Oberhofer,
lori_oberhofer@nps.gov	lori_oberhofer@nps.gov
Lawrence Glenn, lglenn@sfwmd.gov	Mark Cook, mcook@cfumd.gov
	Mark Cook, mcook@sfwmd.gov
Lawrence Glenn, lglenn@sfwmd.gov	Mark Cook, mcook@sfwmd.gov

	Col Lauzau, Collette.Lauzau@FloridaDEP.gov
Dan Scheidt, scheidt.dan@epa.gov	Dan Scheidt, scheidt.dan@epa.gov
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
Kenneth Weaver,	Alicia Hogue,
kenneth.weaver@floridadep.gov	Alicia.Hogue@FloridaDEP.gov
Kenneth Weaver,	Curtis Musson,
kenneth.weaver@floridadep.gov	Curtis.musson@FloridaDEP.gov
 Erik Stabenau,	,
Erik_Stabenau@nps.gov	,

Sarah Janssen, sjanssen@usgs.gov	Sarah Janssen, sjanssen@usgs.gov
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu
John Kominoski, jkominos@fiu.edu	Gabriel Kamener, gkamener@fiu.edu

Kenneth Weaver,	Alicia Hogue,
kenneth.weaver@floridadep.gov	Alicia.Hogue@FloridaDEP.gov
Kenneth Weaver,	Alicia Hogue,
kenneth.weaver@floridadep.gov	Alicia.Hogue@FloridaDEP.gov
Kenneth Weaver,	Curtis Musson,
kenneth.weaver@floridadep.gov	Curtis.musson@FloridaDEP.gov
Kenneth Weaver,	Alicia Hogue,
kenneth.weaver@floridadep.gov	Alicia.Hogue@FloridaDEP.gov
Kenneth Weaver,	Alicia Hogue,
kenneth.weaver@floridadep.gov	Alicia.Hogue@FloridaDEP.gov
Kenneth Weaver,	Alicia Hogue,
kenneth.weaver@floridadep.gov	Alicia.Hogue@FloridaDEP.gov

Dlip Shinde, dilip_shinde@nps.gov	John Kominoski, jkominos@fiu.edu
Donatto Surratt,	Tiffany Troxler, troxlert@fiu.edu
donatto_surratt@nps.gov	

Steven Blackburn,	Dr. James Douglas; Florida Gulf Coast
blackburn.steven@epa.gov	University, jdouglass@fgcu.edu
Steven Blackburn,	Dr. James Douglas; Florida Gulf Coast
blackburn.steven@epa.gov	University, jdouglass@fgcu.edu
Steven Blackburn,	Dr. James Douglas; Florida Gulf Coast
blackburn.steven@epa.gov	University, jdouglass@fgcu.edu
Steven Blackburn,	Dr. James Douglas; Florida Gulf Coast
blackburn.steven@epa.gov	University, jdouglass@fgcu.edu

Steven Blackburn,	Dr. James Douglas; Florida Gulf Coast
blackburn.steven@epa.gov	University, jdouglass@fgcu.edu
Steven Blackburn,	Dr. James Douglas; Florida Gulf Coast
blackburn.steven@epa.gov	University, jdouglass@fgcu.edu
Steven Blackburn,	Dr. James Douglas; Florida Gulf Coast
blackburn.steven@epa.gov	University, jdouglass@fgcu.edu
Steven Blackburn,	Dr. James Douglas; Florida Gulf Coast
blackburn.steven@epa.gov	University, jdouglass@fgcu.edu

Steven Blackburn,	Dr. James Douglas; Florida Gulf Coast
blackburn.steven@epa.gov	University, jdouglass@fgcu.edu
Steven Blackburn,	Dr. James Douglas; Florida Gulf Coast
blackburn.steven@epa.gov	University, jdouglass@fgcu.edu
Steven Blackburn,	Dr. James Douglas; Florida Gulf Coast
blackburn.steven@epa.gov	University, jdouglass@fgcu.edu
Steven Blackburn,	Dr. James Douglas; Florida Gulf Coast
blackburn.steven@epa.gov	University, jdouglass@fgcu.edu

Steven Blackburn,	Dr. James Douglas; Florida Gulf Coast
blackburn.steven@epa.gov	University, jdouglass@fgcu.edu
Steven Blackburn,	Dr. James Douglas; Florida Gulf Coast
blackburn.steven@epa.gov	University, jdouglass@fgcu.edu
Marsha Ward, marsha.ward@myfwc.com	Eric Suarez, eric.suarez@myfwc.com
Deborah Epperson, depperson@usgs.gov	Kristen Hart, kristen_hart@usgs.gov
Gina Ralph,	Tasso Cocoves,
gina.p.ralph@usace.army.mil	Tasso.C.Cocoves@usace.army.mil